Structural bioinformatics KFC/STBI

What is structural bioinformatics?

Karel Berka Miroslav Krepl

Requirements

- Project:
 - Structure analysis, docking, comparison of proteins, prediction of properties from structure, ...
 - 1(max. 2) page-long report with
 - Hypothesis
 - Brief Methodology
 - Conclusions

ev. ChannelsDB – doplnění 5 struktur do databáze

• Exam:

 Project-like Questions – problem + discussion about its possible resolution from you side

Content

- Structural bioinformatics, Biomolecules, Structural hierarchy
- Structure determination (X-Ray, NMR, EM), Structure file formats
- Structural databases (PDB, CATH, SCOP, Drugbank)
- Vizualization of structure, structural alignment
- Structure prediction, CASP, AlphaFold ML revolution
- Function prediction, CASA
- Binding prediction protein-ligand and protein-protein docking
- Challenges of structural bioinformatics membrane proteins, nucleic acids, protein-protein interactions prediction
- Examples: SARS-CoV-2, Switchable proteins

Bioinformatics

(Molecular) **bio** – informatics: bioinformatics is conceptualising biology in terms of molecules (in the sense of physical chemistry) and applying "informatics techniques" (derived from disciplines such as applied maths, computer science and statistics) to understand and organise the data and information associated with these molecules, on a *large scale*. In short, bioinformatics is a management information system for molecular biology and has many practical applications.

Oxford English Dictionary

Structural bioinformatics

Use of structure

- Databases, classification
 proteins, NA, drugs
- Patterns
 - Active sites, allosteric sites, ...
- Prediction
 - structure, function, active site, channels...
- Docking
 - Fitting of small molecules into the active site
 - -> in silico drug design
- Simulations
 - What if...

Problems of structural bioinformatics

- Structural data are hard to work with:
 - Nonlinear
 - Imprecise from experiment (resolution of structure)
 - 3D representation (3D search)
 - Visualization is not trivial
 - More conserved than sequence data (genomics)
 - Structural genomics prepare structures without annotation
 - Most structures are water soluble globular proteins (most drug targets are membrane proteins)

Challenges

- Target selection
 - Large structures are resource intensive, maybe just one domain might be enough
- Structure methods
 - XRay crystalisation is not easy
 - NMR size problem indistinguishable peaks
 - EM only recently with atomistic detail
- Validation and Annotation
- Databases
- Correlation of structural data with experimental data

Example 1 : Prediction of protein structure

- Tertiary structure
 - Fold recognition
 - Homolog modelling
 - Structural alignment
 - ab initio modelling
 - ML methods
- Function prediction

"Now collapse down hydrophobic core, and fold over helix 'A' to dotted line, bringing charged residues of 'A' into close proximity to ionic groups on outer surface of helix 'B' ..."

Reproduced in U. Tollemar, "Protein Engineering i USA", Sveriges Tekniska Attachéer, 1988

active sites, channels, pores, allosteric sites, conformations...

Example 2: Molecular graphics

- We make nice figs!
- Simulations
 - Structure => Energy
 - Time => Dynamics

- Docking binding
 - ligands
 - Protein-protein

GOLD docking of compound to acetyltransferase

Structure Description

Coordinate systems

- XYZ (cartesian)
- Inner coordinates (bond lengths, bond angles, torsion angles)
- object representation (secondary structure)

Structure comparison:

RMSD – root mean square distance

Typical geometrical operations

Bond lengths

Bond angles

Torsions (dihedral angles)

Bond Lengths

- function of position of 2 atoms
- Bond length is almost constant
- Type of bond
 - simple C-C
 - double C=C
 - triple C≡C
- Minimal 1.09 Å (C–H) ^{C–H}
- Typical 1.54 Å (C–C)
- Longer heteroatoms (sulphur, halogens, metal ions)

12

Table 9	.2 Averag	je Bond En	ergies (kJ/	/mol) and	Bond Leng	jths (pm)					
Bond	Energy	Length	Bond	Energy	Length	Bond	Energy	Length	Bond	Energy	Length
Single E	Bonds										
H—H	432	74	N—H	391	101	Si—H	323	148	S—H	347	134
H—F	565	92	N—N	160	146	Si—Si	226	234	S—S	266	204
H-Cl	427	127	N—P	209	177	Si-O	368	161	S-F	327	158
H—Br	363	141	N-O	201	144	Si—S	226	210	S-Cl	271	201
H—I	295	161	N—F	272	139	Si-F	565	156	S—Br	218	225
			N-Cl	200	191	Si-Cl	381	204	S—I	~170	234
C-H	413	109	N—Br	243	214	Si-Br	310	216			
C-C	347	154	N—I	159	222	Si-I	234	240	F—F	159	143
C—Si	301	186							F-Cl	193	166
C-N	305	147	O—H	467	96	P—H	320	142	F—Br	212	178
С—О	358	143	O—P	351	160	P-Si	213	227	F—I	263	187
C-P	264	187	0-0	204	148	P-P	200	221	CI-CI	243	199
C—S	259	181	O—S	265	151	P-F	490	156	Cl—Br	215	214
C-F	453	133	O—F	190	142	P-Cl	331	204	Cl—I	208	243
C-Cl	339	177	O-Cl	203	164	P-Br	272	222	Br—Br	193	228
C—Br	276	194	O—Br	234	172	P-I	184	246	Br—I	175	248
C—I	216	213	0—I	234	194				I—I	151	266
Multiple	e Bonds										
C=C	614	134	N=N	418	122	C = C	839	121	N=N	945	110
C=N	615	127	N=0	607	120	$C \equiv N$	891	115	$N \equiv 0$	631	106
C=0	745	123	O ₂	498	121	C≡0	1070	113			
(799 in CO ₂)											

Calculation of atom distance

In Cartesian coordinates:

For two points with coordinates (x_1, y_1, z_1) and (x_2, y_2, z_2)

$$d_{2-1} = \sqrt{\left[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2\right]}$$

Some distances within protein backbone are **constant** even if not in direct bond:

 $C\alpha - C\alpha$ distance between consecutive amino acids is 3.8 Å

Bond Angles

- function of position of 3 atoms
- Almost constant for given combination of type of atoms
- Depend on atom type and number of electrons in bonding
- Interval from 90 to 180

© 2006 Brooks/Cole - Thomson

Arccosin of angle between two vectors BA and BC

Dihedral Angle

- function of position
 of 4 atoms
- Quite variable (0 to 360°)
- its change change conformations

Calculation of dihedral angle

Dihedral angle = Angle between vectors orthogonal to planes defined by vectors:

- 1) Plane 1 Vectors BA and CB
- 2) Plane 2 Vectors CB and DC

Important dihedral angles in proteins

Important dihedral angles in proteins

- Omega ω is constant = 180 (C-N do not rotate)
- Phi Φ, Psi Ψ intervals (Cα-N, C-Cα can rotate) restricted to certain areas due to following amino acids

Ramachandran plot

- Typical values of dihedral angles define individual secondary structure elements:
 - $-\alpha$ -helix phi = 57, psi = 47
 - 3-10 helix phi = 49, psi = 26
 - Parallel β -sheet phi = 119, psi = 113
 - Antiparallel β -sheet phi = 139, psi = 135

Secondary structure

Helices and β -strands = Secondary Structure Elements (SSEs)

• Quite conserved arrangement within a protein family

Solvent

- Can serve as landmarks, which
 - Help us orient in the structure
 - Help us locate the key regions channel (active sites, channels...)

Other Coordinate Systems

Cartesian coordinates are orthogonal (x,y,z)

-> used most often

If bond lengths and bond angles are constant -> reduction of coordinates -> only dihedral angles => Inner coordinates

If some part of structure can be defined by "rigid" structural element -> solid objects => **Object-based coordinates**

Advantages of Inner Coordinates

3 peptide units = 12 atoms = 36 coordinates OR 6 dihedral angles 3 sidechains = 12 atoms = 36 souřadnic OR 5 dihedral angles

72 cartesians versus 11 inners

Disadvantages of Inner Coordinates

Some calculations are more difficult

Atom-atom distance Closest atoms toward a point in space

Hard comparison of independent objects (two molecules)

Nonlinear relationships between coordinates => problem for optimizations and simulations

Object-based coordinates

Use of larger objects - secondary structure, subset of atoms...

Midlik A, Hutařová Vařeková I, Hutař J, Chareshneu A, Berka K, Svobodová R: **OverProt**: secondary structure consensus for protein families, *Bioinformatics*, 38(14), July 2022, 3648–3650 Midlik A, Navrátilová V, Moturu TR, Koča J, Svobodová R, Berka K: Uncovering of cytochrome P450 anatomy by **SecStrAnnotator**. *Sci Rep* 11, 2021, 12345 Hutařová Vařeková I, Hutař J, Midlik A, Horský V, Hladká E, Svobodová R, Berka K, **2DProts**: database of family, wide protein secondary structure diagrams, *Bioinformatics*, 37(23), 2021, 4599–4601,

OverProt Server – Interactive view

• 1D of the family linked to 2D and 3D of a domain

Midlik A, Hutařová Vařeková I, Hutař J, Chareshneu A, Berka K, Svobodová R: **OverProt**: secondary structure consensus for protein families, *Bioinformatics*, 38(14), July 2022, 3648–3650

Structure Comparison

For comparison of two structures A and B we need:

1. Which atom from A corresponds to which atom from B

- => alignment
- 2. Atom localization
 - => PDB files
- 3. Comparison criteria

RMSD, energy

RMSD = Root Mean Square Deviation

- Atoms from A and B are taken as equivalent
- Superposition and calculation of differences in distance

$$\mathbf{RMSD} = \sqrt{\frac{\Sigma \, \mathrm{d}^2_{\mathrm{i}}}{\mathrm{N}}}$$

- If are structures identical -> RMSD = 0
- With more differences between structures -> RMSD increses
 - N number of atoms
 - d_i distance of two atoms with index *i* from A and B

Structure Comparison

To find minimal RMSD

Calculation of RMSD

- translate and rotate one structure with respect to the other to minimize the RMSD
- Centroid-based solutions (Huang,Blostein,Margerum)
- Quaternion-based solutions

(rotation-translation) that minimizes the RMSD between two sets of vectors

(Faugeras a Hebert, Petitjean)

 Matrix Singularity-based methods (Arun, Huang, Blostein)

Arun algorithm

- Matrices of pi' = R.pi + T + Ni
 - pi 3x1 column matrix of positions
 - R rotation matrix
 - T translation vector 3x1 column matrix
 - N noise vector
- 1) Translation over **centroids**
- 2) Singular value decomposition of matrix to obtain rotation

• Arun algorithm is optimal, universal and not iterative

Kabsch algorithm

- 1) Translation over **centroids**
- 2) computation of a **covariance matrix**,
- 3) the computation of the **optimal rotation matrix**.

- Kabsch algorithm is widely used as *fit* function in PyMol, or within VMD
- Algorithm do not recognise similar pairs of residues these have to be defined iteratively (typically Cα)

Kabsch, W (1976): A solution for the best rotation to relate two sets of vectors. *Acta Cryst.* **A32** (5): 922. With a correction in Kabsch, W (1978). <u>"A discussion of the solution for the best rotation to relate two sets of vectors"</u>. *Acta Cryst.* **A34** (5): 827–828.

Advantages and Disadvantages of RMSD

Good behavior, identical structures RMSD = 0 Simple calculation in Cartesian coordinates Natural units (Ångstroms) Experience (similar structures have RMSD ~ (1 – 3 Å)

Weight of all atoms is the same

however hydrogens have much smaller effect in practice –> RMSD only for backbone or $C\alpha$

Prone to extremities

RMSD of larger protein is larger even if the structure is almost identical

RMSD of 3 Å for 100 residue protein is really bad, for 1000 residue protein it is sensible.
Other measures

• global distance test (GDT)

– largest set of amino acid residues' $C\alpha$ atoms in the model structure falling within a defined distance cutoff of their position in the experimental structure.

⇒Used in structure prediction assessment (CASP)

- template modeling score (TM-score)
 - difference between two structures by a score between (0,1] $\operatorname{TM-score} = \max\left[\frac{1}{L_{\text{target}}}\sum_{i}^{L_{\text{aligned}}}\frac{1}{1+\left(\frac{d_{i}}{d_{0}(L_{\text{target}})}\right)^{2}}\right]$
 - TM-score = 1 perfect match between two structures
 - TM-score > 0.5 assume roughly the same fold
 - TM-score < 0.20 randomly chosen unrelated proteins
 - \Rightarrow Used in structure prediction assessment (CASP)

Biomolecules

- proteins
- NA DNA, RNA
- lipids
- polysaccharides
- Small molecules (hormones, drugs)

Proteins

- Amino acids
- Backbone and Sidechains
- Primary structure
 - sequence of amino acids
- Secondary structure
 - Local structural patterns
- Tertiary structure
 Domain Fold
- Quarternary structure – Multichain organization

Amino acids

Primary Structure of Protein

AMINO ACID

SIDE CHAIN

Aspartic acid	Asp	D	negative
Glutamic acid	Glu	Е	negative
Arginine	Arg	R	positive
Lysine	Lys	Κ	positive
Histidine	His	н	positive
Asparagine	Asn	Ν	uncharged polar
Glutamine	Gln	Q	uncharged polar
Serine	Ser	S	uncharged polar
Threonine	Thr	Т	uncharged polar
Tyrosine	Tyr	Y	uncharged polar

POLAR AMINO ACIDS

Alanine Ala Α nonpolar Glycine Gly nonpolar G Valine Val nonpolar V Leucine nonpolar Leu L Isoleucine lle nonpolar Proline Pro nonpolar Ρ Phenylalanine Phe F nonpolar Methionine nonpolar Met M nonpolar Tryptophan W Trp Cysteine nonpolar С Cys

SIDE CHAIN

AMINO ACID

— NONPOLAR AMINO ACIDS —

Alberts, Molecular Biology of the Cell, 5th Ed.

Secondary structure of Proteins

- Local folding
- Secondary structure depends on amino acid sequence
 - $-\alpha$ -helix
 - 3-10 helix
 - β-sheet
 - β-turn, loop

PROCHECK summary for 1aaq

PROCHECK statistics

Ramachandran Plot statistics

No. of	No. of residues	
Most favoured regions [A,B,L]	146	92.4 %
Additional allowed regions [a,b,l,p]	12	7.6%
Generously allowed regions [~a,~b,~l,~p]	0	0.0%
Disallowed regions [XX]	0	0.0%
Non-glycine and non-proline residues	158	100.0%

End-residues (excl. Gly and Pro)	2	
Glycine residues	26	
Proline residues		
Total number of residues	198	

Tertiary Structure

- fold
 - globular
 - membrane
 - Fibrilar
 - IUP
- Necessary for FUNCTION
- domains

'CATHerine wheels'.

Cuff A L et al. Nucl. Acids Res. 2011;39:D420-D426

The distribution of all nonhomologous structures (2386) within CATH v3.3

Classes:

pink (mainly α), yellow (mainly β), green ($\alpha\beta$) brown (little secondary structure).

Proportion of structures within any given architecture (inner circle)Fold group (outer circle).

Nucleic Acids Research

Bordin N et al.: AlphaFold2 reveals commonalities and novelties in protein structure space for 21 model organisms. *bioRxiv* 2022, doi:10.1101/2022.06.02.494367v1.full

Quarternary Structure

- asociace více řetězců:
 - Kooperativita
 - (asociace zesílí vazebné vlastnosti) hemoglobin
 - Kolokalizace funkce (každá podjednotka dělá něco jiného) tryptophansyntáza
 - Kombinace podjednotek (přizpůsobování) imunoglobuliny
 - Skládání větších struktur (podjednotky uspořádávají procesem self-assembly) aktin, virové kapsidy

- Primary structure
 - sequence of NA basis in chains
- Secondary structure
 - set of interactions between nucleic basis
- Tertiary structure
 - 3D localization of atoms
- Quarternary structure
 - Higher organization levels
 - DNA in chromatin
 - Interaction of RNA units in ribosome or spliceosome.

DNA – DeoxyriboNucleic Acid

- bases, deoxyribose sugar, phosphate nucleotide
- Bases are flat \rightarrow stacking
- p<u>Y</u>rimidines C, T
- pu<u>R</u>ines A, G

•http://www.umass.edu/molvis/tutorials/dna/, http://ich.vscht.cz/~svozil/teaching.html

Nucleotide

- nucleosides are interconnected by phospohodiester bond
- nucleotide monophosphate

Watson-Crick pairing

Н.....

Párování

Tilt

Roll

Twist

Coordinate frame

З

DNA backbone

Base at sugar dihedrals

Sugar conformation

Pseudorotational cycle for furanose ring puckers.

© 2007 The Author(s)

Maderia M et al. Nucl. Acids Res. 2007;35:1978-1991

DNA Double helix

 $5' \longrightarrow 3'$ AATCGCTA TTAGCGAT $3' \longleftarrow 5'$

antiparallel

Types of DNA

B-DNA

A-DNA

Z-DNA

Biological role of different DNAs

- B-DNA
 - -canonical DNA
 - -predominant
- A-DNA
 - Conditions of lower humidity, common in crystallographic experiments. However, they're artificial.
 - In vivo local conformations induced e.g. by interaction with proteins.
- Z-DNA
 - -No definite biological significance found up to now.
 - It is commonly believed to provide torsional strain relief (supercoiling) while DNA transcription occurs.
 - The potential to form a Z-DNA structure also correlates with regions of active transcription.

Different sets of DNA

- nuclear DNA
 - -cell's nucleus
 - -majority of functions cell carries out
 - -sequencing the genome scientists mean nuclear DNA
- mitochondrial DNA
 - -*mt*DNA
 - circular, in human very short (17 kbp) with 37 genes (controling cellular metabolism)
 - -all *mt*DNA comes from mom
- chloroplast DNA
 - -*cp*DNA
 - -circular and fairly large (120 160 kbp), with only 120 genes
 - -inheritance is either maternal, or paternal

RNA - ribonucleic acid

RNAs involved in protein synthesis

Type 🖂	Abbr. 🖂	Function 🖂	Distribution 🖂	Ref. 🖂
Messenger RNA	mRNA	Codes for protein	All organisms	
Ribosomal RNA	rRNA	Translation	All organisms	
Signal recognition particle RNA	7SL RNA or SRP RNA	Membrane integration	All organisms	[1]
Transfer RNA	tRNA	Translation	All organisms	
Transfer-messenger RNA	tmRNA	Rescuing stalled ribosomes	Bacteria	[2]

RNAs involved in post-transcriptional modification or DNA replication

Туре 🖂	Abbr. 🖂	Function M	Distribution 🖂	Ref. 🖂
Small nuclear RNA	snRNA	Splicing and other functions	Eukaryotes and archaea	[3]
Small nucleolar RNA	snoRNA	Nucleotide modification of RNAs	Eukaryotes and archaea	[4]
SmY RNA	SmY	mRNA trans-splicing	Nematodes	[5]
Small Cajal body-specific RNA	scaRNA	Type of snoRNA; Nucleotide modification of RNAs		
Guide RNA	gRNA	mRNA nucleotide modification	Kinetoplastid mitochondria	[6]
Ribonuclease P	RNase P	tRNA maturation	All organisms	[7]
Ribonuclease MRP	RNase MRP	rRNA maturation, DNA replication	Eukaryotes	[8]
Y RNA		RNA processing, DNA replication	Animals	[9]
Telomerase RNA		Telomere synthesis	Most eukaryotes	[10]

Regulatory RNAs

Type 🖂	Abbr. 🖂	Function M	Distribution 🖂	Ref. 🖂
Antisense RNA	aRNA	Transcriptional attenuation / mRNA degradation / mRNA stabilisation / Translation block	All organisms	[11][12]
Cis-natural antisense transcript		Gene regulation		
CRISPR RNA	crRNA	Resistance to parasites, probably by targeting their DNA	Bacteria and archaea	[13]
Long noncoding RNA	Long ncRNA	Various	Eukaryotes	
MicroRNA	miRNA	Gene regulation	Most eukaryotes	[14]
Piwi-interacting RNA	piRNA	Transposon defense, maybe other functions	Most animals	[15][16]
Small interfering RNA	siRNA	Gene regulation	Most eukaryotes	[17]
Trans-acting siRNA	tasiRNA	Gene regulation	Land plants	[18]
Repeat associated siRNA	rasiRNA	Type of piRNA; transposon defense	Drosophila	[19]
7SK RNA	7SK	negatively regulating CDK9/cyclin T complex		

RNA

pre-mRNA hairpin

50S-ribozome

Parasitic RNAs

Туре 🖂	Function M	Distribution M	Ref. 🖂
Retrotransposor	Self-propagating	Eukaryotes and some bacteria	[20]
Viral genome	Information carrier	Double-stranded RNA viruses, positive-sense RNA viruses, negative-sense RNA viruses, many satellite viruses and reverse transcribing viruses	1
Viroid	Self-propagating	Infected plants	[21]
Satellite RNA	Self-propagating	Infected cells	

Other RNAs					
Туре 🗵	Abbr. 🖂	Function 🖂	Distribution 🖂	Ref. 🖂	
Vault RNA	VRNA	Expulsion of xenobiotics, maybe		[22]	

65

FIGURE 1. Left panel: Purine (A or G, indicated by "R") and pyrimidine (C or U, indicated by "Y") bases provide three edges for interaction, as shown for adenosine and cytosine. The Watson–Crick edge comprises A(N6)/G(O6), R(N1), A(C2)/G(N2), U(O4)/C(N4), Y(N3), and Y(O2). The Hoogsteen edge comprises A(N6)/G(O6), R(N7), U(O4)/C(N4), and Y(C5). The Sugar-edge comprises A(C2)/G(N2), R(N3), Y(O2), and the ribose hydroxyl group, O2'. Right panel: The *cis* and *trans* orientations are defined relative to a line drawn parallel to and between the *base-to-base* hydrogen bonds in the case of two hydrogen bonds or, in the case of three hydrogen bonds, along the middle hydrogen bond.

Annotation of 2D RNA Structures

FIGURE 6. Suggested symbols for indicating tertiary interactions and other three-dimensional structural features in twodimensional representations of RNA structures.

RNA Representations

RNA Backbone

sequence/conformation string: NlaGlgNlaRlaAlcNla

Richardson J S et al. RNA 2008;14:465-481

Copyright © 2008 RNA Society

RNA Tetraloop Family Tree.

Hsiao C et al. Nucl. Acids Res. 2006;34:1481-1491

main phospholipids

M. Paloncyová, Lipid membranes report, 2010

Liposome

Micelle

Polysaccharides

- role:
 - Energy storage
 - Molecular recognition
- Harder to read in sequences than NA or proteins
- Quite often on extracellular proteins

Small molecules

0 0 0 0 0 0 0 - P - 0 - P - 0 - P - 0 0 0 - 0 - 0

- NTP
 - Cell energy transporter (ATP)
 - Basic stones for NA
- Messengers, Agonists, antagonists

- (cAMP, xenobiotics)

ÓH ÓH