

- Nukleární Magnetická Resonance spektroskopická metoda založená na měření *absorpce elektromagnetického* záření (rádiové frekvence asi od 4 do 900 MHz). Na rozdíl od UV, VIS a IR absorpce jsou do tohoto procesu zahrnuty jádra atomů ne vnější elektrony.
- je způsobena spinovou rezonancí jader v silném magnetickém poli
- aplikovat pouze na atomy, jejichž jádro má spinový moment (pouze atomy, jejichž jádra mají lichý počet protonů nebo neutronů)

- fyz.-chem. analytická metoda
- řadíme ji stejně jako spektroskopii IR, UV-Vis mezi spektroskopie absorpční
- detekuje absorpci radiofrekvenčního záření jádry atomů v molekule
- toto RF záření má mnohem větší λ (~ 10⁴ cm), protože ke změnám populací spinových stavů v jádře stačí mnohem menší E (~ 10⁻⁶ kcal/mol)

- Z názvu NMR lze odvodit, že využívá:
 - > vlastností atomových jader \rightarrow **NUKLEÁRNÍ**
 - velmi silného magnetického pole na ovlivnění magnetických vlastností jader — MAGNETICKÁ
 - REZONANCE = schopnosti jader přejít na vyšší energetickou hladinu po absorpci RF záření
 - > výsledkem je spektrum

Která jádra jsou NMR aktivní?

- Absorbované záření způsobuje přechody mezi energetickými stavy vzniklými rozštěpením jednoduchých stavů s nenulovým spinem v magnetickém poli.
- Jelikož lokální magnetické pole (a tím i velikost rozštěpení) je ovlivněno okolím atomu, lze tak studovat vlastnosti okolí sondujícího atomu.
- Metoda vhodná zvláště pro studium struktury uspořádání molekul.

Historie NMR

Teorii NMR předložil W. Pauli v roce 1924. Navrhl, že vystavení atomových jader (s jaderným spinem a magnetickým momentem) silnému magnetickému poli by mělo vést k rozštěpení jejich energetických hladin.

Mimo magnetické pole – jaderné spiny nemají žádnou orientaci

V magnetickém poli – jaderné spiny se orientují podle vektoru magnetické indukce (B)

Jaderný spin je kvantován – povoleny pouze vybrané orientace Počet možných orientací - dán spinovým kvantovým číslem (2I+1)

B.

NMR

Avšak až roku 1946 Bloch (Stanford) a Purcell (Harvard) dokázali, že *jádra* atomů *absorbují záření rádiových vln* v silně magnetickém poli jako *důsledek rozštěpení energetických hladin*, což bylo způsobeno magnetickým polem. Tito fyzici dostali za tento objev **Nobelovu Cenu.**

NMR

Felix Bloch (1905-1983)

Edward M. Purcell (1912-1997)

Atomové jádro

- Jádra mají vnitřní moment hybnosti p zvaný jaderný spin. Maximum pozorovatelné složky tohoto momentu hybnosti je kvantováno.
- □ m = I , I-1, ..., -I

 $(m \rightarrow mag. kvant. \check{c}.) (I \rightarrow spin. kvant. \check{c}.)$

 \Box pro I = $\frac{1}{2}$, dva stavy m = $\frac{1}{2}$, $-\frac{1}{2}$

- **D** magnetický moment μ důsl. spinu a náboje jádra
- γ gyromagnetická konst. konst. úměrnosti daná mag. vl. jádra; pro každý typ jádra charakteristická

 $\boldsymbol{\mu} = \gamma \frac{h}{2\pi} \mathbf{I}$

Rozdělení atomových jader

- sudý počet protonů a neutronů kvantové číslo jaderného spinu I=0, nemají jaderný magnetický moment, nejsou v NMR pozorovatelná (¹²C, ¹⁶O)
- nepárový počet protonů a neutronů celočíselný spin, vedle jaderného magnetického momentu mají i kvadrupólový moment, obtížně měřitelná v NMR (¹⁴N, ¹⁷O)
- liché hmotnostní nukleonové číslo poločíselný spin, mají jaderný magnetický moment, snadno měřitelná v NMR (¹H, ¹³C, ¹⁵N, ³¹P)

Atomové jádro

Mimo magnetické pole – jaderné spiny nemají žádnou orientaci

Protony se svým lokálním náhodně orientovaným magnetickým polem, směr je naznačen rovnou šipkou

Atomové jádro

V magnetickém poli – jaderné spiny se orientují podle vektoru magnetické indukce (B) Jaderný spin je kvantován – povoleny pouze vybrané orientace Počet možných orientací - dán spinovým kvantovým číslem (2I+1)

Protony ve vnějším magnetickém poli B₀ (magnetická indukce, jednotka 1T = tesla)

B

B.

ΔE

E

Podobně jako spin elektronu, zaujímá i spin jádra ve vnějším magnetickém poli polohy, které se liší energií.

 $\frac{N_1}{N_2} = e^{\Delta E/k_B T}$

Poměr populací stavů je dán Boltzmannovým rozdělením, ∆E bývá malé

Absorpce radiových frekvencí

Co se děje v NMR experimentu?

 jádra, na něž působí silné a stálé magnetické pole, jsou excitována radiovými vlnami

Blochova teorie

 $\gamma/2\pi$ ¹₁H = 42.577 MHz.T⁻¹ ¹³₆C = 10.705 MHz.T⁻¹

Larmorova frekvence

rezonanční frekvence příslušného jádra

absorpce nastává za rezonanční podmínky

$$\Delta E = \gamma \, \frac{h}{2\pi} \mathbf{B_o} = h \, v$$

 $v({}_{1}^{1}H) = 42.58 \text{ MHz; } B_{0} = 1 \text{ T}$ $v({}_{1}^{1}H) = 200 \text{ MHz; } B_{0} = 4.7 \text{ T}$

Po vložení *silného externího magnetického pole* se jaderné spiny orientují podle vektoru magnetické indukce B_0

Dále když začne působit druhé *radiofrekvenční pole* a toto dosáhne **Larmorovy frekvence** daného jádra – nastane absorpce = tento proces = rezonance

Jádra mohou absorbovat E, jen když je splněna podmínka rezonance, toho lze dosáhnout buď změnou vloženého mag. pole, nebo změnou radiofrekvenčního záření

Během rezonance dochází k vyrovnání obou populací – když dojde k vyrovnání populací – vymizí NMR signál

Čím větší signál populací \rightarrow tím více E systém absorbuje \rightarrow tím intenzivnější signál dostáváme \rightarrow tím citlivější měření lze provést

Stínění jader elektrony

B

elektronová hustota částečně odstiňuje jádro před B₀ takže to cítí B_{local}

B

loca

energetická pozice NMR

jádra, která nemají stejné chemické okolí se liší rozložením elektronů a tím i intenzitou stínění jádra

□ intenzita stínění \approx vnějšímu mag. poli B₀ a je charakterizována stínící konstantou σ

rezonanční frekvence jádra je při různých vnějších polích posunuta o určitý zlomek tohoto pole

nejvíce stíněná jádra - nejvíce vpravo, posunuty k vyššímu poli

- Reálné molekuly atomy = jádro + el. obal, el. svým pohybem zesilují či zeslabují mag. pole B₀
- V místě jádra působí tzv.
 efektivní magnetické pole B_{eff}, které je tvořeno externím mag. polem B₀ a lokálním mag. polem B_{loc}

 $\mathbf{B}_{\rm eff} = \mathbf{B}_0 - \mathbf{B}_{\rm loc}$

$\boldsymbol{B}_{eff} = \boldsymbol{B}_{o} \left(\boldsymbol{1} - \boldsymbol{\sigma} \right)$

σ stínící konstanta ovlivňuje
 rezonanční frekvenci jádra
 = chemický posun

$$v_i = \frac{\gamma}{2\pi} \mathbf{B}_{\mathbf{o}} (\mathbf{1} - \boldsymbol{\sigma}_{\mathbf{i}})$$

rezonanční frekvence jsou jen nepatrně posunuty, pro posun se používají jednotky **ppm** (miliontiny vnějšího pole)

počátek stupnice se volí podle standardu tetramethylsilanu (TMS)

$$\delta(ppm) = \frac{v}{v_o} \times 10^6$$

Standard - TMS

jediná ¹H linie (ostrá a intenzivní) snadno nalezitelná mezi ostatními
 Singletový signál nejvíce vpravo H₃C Si CH₃

přidává se přímo k měřené látce

po skončení měření ho lze mírným zahřátím ze vzorku odstranit

CH2

¹H-NMR Příklady chemických posunů

Multiplicita signálů

mluvíme o hyperjemné struktuře spektra

některé signály v NMR spektru jsou rozštěpeny Methyl triplet - spin-spinové štěpení

Methylene guartet

3

Π.

5

δ

6

způsobeno interakcí se sousedními NMR aktivními jádry přes valenční elektrony

Příklady interpretace ¹H NMR spekter:

Relativní intensity v multipletu

1 singlet 1 1 doublet 1 2 1 triplet 1 3 3 1 quartet 1 4 6 4 1 pentet 1 5 10 10 5 1 sextet 1 6 15 20 15 6 1 septet

Multiplicita signálů

singlet doublet triplet quartet pentet 1:1 1:2:1 1:3:3:1 1:4:6:4:1

Interakční (coupling) konstanta

vzdálenost rozštěpených signálů

• nezávisí na indukci vnějšího mag. pole

 δ (ppm)

Struktura z NMR

 \Box chemický posun δ - chemické okolí jádra

multiplicity a interakční konstanty J počet sousedních mag. aktivních jader a geom. uspořádání

integrální intenzity signálů - počet ekvivalentních atomů v molekule

korelační signály atp.

Vzorek obsahující magneticky aktivní jádra vložíme do magnetického pole a do blízkosti vzorku umístíme cívku, kterou protéká střídavý proud o frekvenci v oblasti MHz. Potom měníme spojitě intenzitu magnetického pole B₀ nebo frekvenci proudu v cívce. Při splnění rezonanční podmínky dojde k absorpci radiofrekvenčního záření.

400 MHz NMR Spektrometr

400 MHz supravodivý magnet

- síla magnetického pole
 9.4 Tesla (94,000 gauss)
- 400 MHz je použitá frekvence pro detekci protonů v tomto poli

Umístění NMR vzorku

NMR vzorek je umístěn navrchu sondy

tekutý dusík -196°C (77.4 K)

kapalné helium -269°C (4.2 K)

supravodivé magnety vyžadují neustálé chlazení

Magnetické pole

vytváří supravodivé cívky (několik tisíc závitů, protéká proud 100 A)

```
□ indukce 4 - 18 T
```

homogenita pole se upravuje spec. sadou různě orientovaných cívek

část nehomogenit možno eliminovat rotací kyvety

FT-NMR

Po zpracování Fourierovou transformací dostaneme:

Všechna jádra excitována velmi krátkým radiofrekvenčním pulsem (µs). Návrat jader do rovnovážného stavu možno sledovat jako FID (free induction decay, volné doznívání indukce).

FID

- tvar exponenciálně tlumené periodické funkce představující součet sinusoid s frekvencemi příslušejícími jednotlivým signálům
- představuje závislost intenzity proudu indukovaného ve snímací cívce na čase
- informace o fázovém posunu každé frekvence vůči fázi excitační frekvence
- Fourierovou transformací se FID převede na normální spektrum (závislost intenzity na frekvenci)

NMR techniky

□protonové spektrum ¹H NMR □uhlíkové spektrum ¹³C NMR další jednodimenzionální techniky dvoudimenzionální techniky (COSY – Correlation Spectroscopy, NOESY – Nuclear Overhauser Efect ...)

Protonové spektrum ¹H NMR

nejčastěji měřené

stačí méně než 1 mg vzorku

spektrum obsahuje

intenzity signálů

chemické posuny protonů

interakce mezi nimi

¹H - NMR Spektrum

¹H-NMR Data: 3 součásti "kvartet" "triplet"

- 1. Chemický posun každý neekvivalentní vodík dává jedinečný signál na ose x.
- 2. Spin-spin interakce sousedící NMR aktivní jádra štepí každý signál.
- 3. Integrace plochy píků jsou úměrné počtu ekviv. jader poskytujících signál.

Uhlíkové spektrum ¹³C NMR

potřeba 5 - 10 mg vzorku

doba měření: řádově desítky minut

měří se s ozářením protonů

spektrum poskytuje informace o chemických posunech uhlíkových atomů

druhé nejběžnější spektrum

Využití NMR spektroskopie

- sledování průběhu reakcí
- ověřování struktury produktů
- studium tkání a orgánů v lidském těle (tomografie)
 - Za MRI (magnetic resonance imaging) byla udělena Nobelova cena R. Ernstovi roku 1991
 - měření změn mag. momentů atomových jader vodíku
- určování struktury sloučenin
- 🗆 kvantitativní analýza