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Part 1: Molecular similarity



What is similarity?

e "Everything is like everything, and in endless ways" - Donald
Davidson, What Metaphors Mean



What is similarity?

e Similarity is a degree of sameness for different things

e Similarity is a measure of shared features between non-identical
things



When and why are molecules similar?

Which of these 3 molecules are most similar to each other?
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When and why are molecules similar?

Which of these 3 molecules are most similar to each other?
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Why similarity?

* The similarity principle (neighborhood behavior):
* Similar structures have similar properties, including biological
e "TS of 0.85 corresponds to same biological activity"

* Applicability Domain problem:
* More confidence in prediction similar to training data of models
e Similarity to judge what are the things we know about

* Ligand based drug design/virtual screening:
* Based on finding important common features in molecules
* No explicit structural information needed (as in SBDD)



When and why are molecules similar?

* Molecules can be similar in more than one way

* Choosing meaningful features to compare is crucial



In which ways can molecules be similar?

* Topologically: based on atom connectivity
* Local: presence or non-presence of substructures
* Global: topological distance of substructures

* Geometrically: based on molecule geometry
* Euclidean distance of substructures
e Shape similarity
* Electrostatic similarity
 Pharmacophore matches (3d feature distribution)

* Physicochemically: based on physical and chemical properties
* Can be estimated by models
e Can be measured



In which ways can molecules be similar?

* Biologically:
e Can be predicted (e.g. QSAR, pharmacophores)
* Can be measured
* |n general this the property we want as an endpoint!



Descriptors

* "[T]he set of all descriptors for a particular compound [can be
considered] as being akin to keywords used in a (computer) search
of a library of books" - Stuart Rosenfeld & Nalini Bhushan, Chemical
Synthesis: Complexity, Similarity, Natural Kinds, and the Evolution of a
“Logic”



Descriptors

* Number corresponding to a calculated,predicted or measured property of
the molecule

* Presence or non-presence of substructures
* Polarity

* Predicted toxicity

* Graph invariants

* HTS measurement

e 3D features

* Substituent contributions



Fingerprints

e Efficient and standardized representation of chemical features
e Typical form:binary vector of fixed length

* Extended connectivity fingerprint (ECFP/morgan)

e Structural keys (e.g. MACCS)

* Atom pairs

* Pharmacophore fingerprint

* Use: building models, efficient searching, similarity estimation



Fingerprint example: MACCS vs ECFP
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Figure reference: ACS Omega 2022, 7, 22, 19030-19039
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Fingerprints example: construction of ECFP
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Fingerprints example: construction of ECFP
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Fingerprints example: construction of ECFP
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Fingerprints example: construction of ECFP
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Quantitative similarity

* Tanimoto similarity
* "features in common divided by total features"

* Euclidean distance
 "distance in Euclidean space”

* Cosine distance
* "their dot product divided by the product of their magnitudes”



Comparing apples to oranges using Tanimoto
Similarity

moderate Round China Smooth
green yes yes moderate Non-round China Smooth
orange  yes yes hot Round Egypt Rough
. Apples are more similar to pears (0.56) than they are to oranges (0.27)
Oranges are more similar to apples (0.27) than they are to pears (0.17)
% 1 5/9 3/11 Apples and pears form a cluster!
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Chemical space(s)

 All possible structures existing under given criteria (heavy atoms,
druglikeness, synthesizability,...)

 \Very vast (10720 to 10760)

e Visualization: PCA, MCA (multiple correspondence analysis),tSNE,
various other unsupervised learning based techniques

* Exploration of chemical space: molecular optimization!



Chemical space representation

PCA embedding

*‘.':-!i!'i? vanilloids
4 sﬂ‘wﬁ glucocorticoids
2 4
0
_2 -
-4 Y . . r r : . T

PCA vs tSNE (ECFP6_20438)

tSNE embedding

o s vanilloids
60 - 4. ¢+ glucocorticoids
% i
J wh 4 o ; -’
40 \";.‘.,-: ? ‘: Saete o .t.-i"?‘
P PN :
20 . ",' . b -3
4 . %, ey H .t'q.
Y ;‘1.?'*"_. ——tn *
0 - s - " ‘0;- o e
- !?- at ’
[ gt e H *. o 1
—20 - AL e o K %ot
» W " - A
R Y I
~40 - P -
&F -
a” ¢
_60. -
W
80 - FosTe
-25 0 25 50 75




Exploring Chemical Space

* Molecular interpolation:
* MOLPHER

Figure reference: ACS Cent. Sci. 2018, 4, 2, 268-276
 MolVAE
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Part 2: Molecular optimization



Molecular optimization

* Enhance the desired properties, and diminish the undesired
properties of a molecules by directed exploration of similar molecules



Properties to optimize

* "ADME(T)" - pharmacokinetics

* Absorption

* Distribution

* Metabolism

* Elimination

* (T)oxicity (incl. of metabolites)



Properties to optimize

* Activity - Pharmacodynamics
* Binding energy
* Assay activity
* Ki, Kd, EC50, IC50
* Host-guest affinity more generally



Properties to optimize

* Synthesizability and cost of production
* Expert assessment
* SAScore
* Price prediction (QSSR)



Properties to optimize

* General physicochemical properties
* Molecular weight
* Lipophilicity



Properties to optimize

e Steric/spatial properties
* Space complementarity to binding site
* Also cavities in MOFs, Zeolites etc



Molecular optimization is a multiparameter
optimization

* Lipinski Rule of 5

* QED: quantitative estimation of drug-likeness

* LogP and activity are correlated

 Descriptors (incl. those in QED) are often correlated



Molecular optimization strategies

* Molecular optimization is a movement through chemical space
* Directed by feedback (models, measurements)
* Assumption of smooth path

 Activity landscapes:
* Continuous
* Discontinuous
* Heterogenous



Virtual screening and optimization

* QSAR models:

* Predict properties such as activity, toxicity, solubility, ...
* Docking:

 Validate structure-based theories

e Ranking (unreliable but with enrichment)

* FEP, MM-GBSA:
» Ranking (more reliable than docking)



Optimization discontinuities

* Activity cliffs:

e 5 e

pK;: 6.99 pK;: 9.05

; ° ! {
N, —N —
F OEN# OJT;/N-— N & o Cl > N \ /NCI
F

pK;: 6.27 pK;: 8.44

ACS Omega 2019, 4, 11, 14360-14368

¢ Magic Methyl Effect
=
0" N | 480-fold boost in potency
from a single methyl! group
N7 R R=H 96nM
R’go R=Me 0.2nM

Angewandte Chemie, Volume52, Issue4d?,
November 18, 2013



https://onlinelibrary.wiley.com/toc/15213773/2013/52/47

Bio-isosteric replacement

* Chemical substructures that can (sometimes) be substituted for each
other while retaining the same biological activity

* Underlying reason is often steric and electronic
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Scaffolds

* Molecular core structure that gets decorated with substituents
* Defined at various levels of coarseness
* Scaffold hopping:

* Replace the core structure but retain activity
* Find "dissimilar" actives

Sildenafil Vardenafil



Patentability

e Markush structures

* Bio-isosteric replacements and scaffold hopping make it possible to
explore non-patented chemical space

* They also allow search more dissimilar, more novel chemical space in
an efficient way

R is selected from the group consisting of hydrogen, alkyl of 1 to 3
carbon atoms, inclusive, phenyl, benzyl and -COOR" in which R’ is alkyl
of 1 to 4 carbon atoms, inclusive,

R, is selected from the group consisting of hydrogen and alkyl of 1 to 3
carbon atoms, inclusive;

R,, R3, R; and Rg are selected from the group consisting of hydrogen,
alkyl of 1 to 3 carbon atoms, inclusive, halogen, nitro, cyano,
trifluoromethyl, and alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl,
alkanoylamino and dialkylamino in which the carbon chain moieties are
of 1 to 3 carbon atoms, inclusive;




Conclusion

* To optimize a molecule in the direction we want, we need good,
guantitative similarity metrics

* To have a good similarity metric we need to pick meaningful features
* These features can form the basis of more advanced modelling
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