

6th Advanced in silico Drug Design workshop/challenge 2023

Fantastic Natural Products and Where to Find Them

Dr. Olena Mokshyna | 31.01.2023

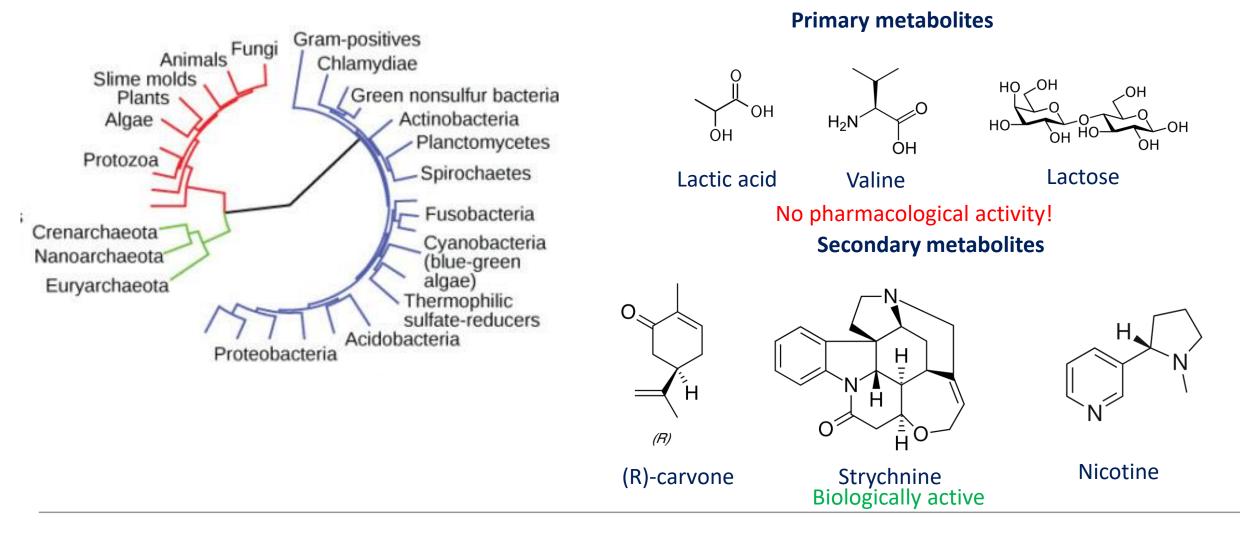
IOCB Prague

Tomáš Pluskal Group Biochemistry of Plant Specialized Metabolites

Experiments S Computations for P bioactive molecules discovery

Natural Products (NPs): what are they?

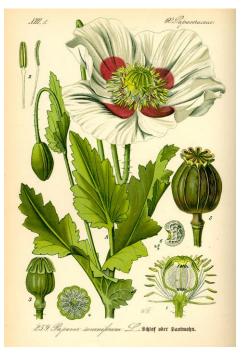
Any compound produced by living organisms



Plants with unusual properties become first medicines

Sumerian clay tablet, c. 3000 BC

Arabic Dioscorides, 1224



Papaver somniferum

Ebers papyrus, Ancient Egypt c. 1550 BC

Slide number

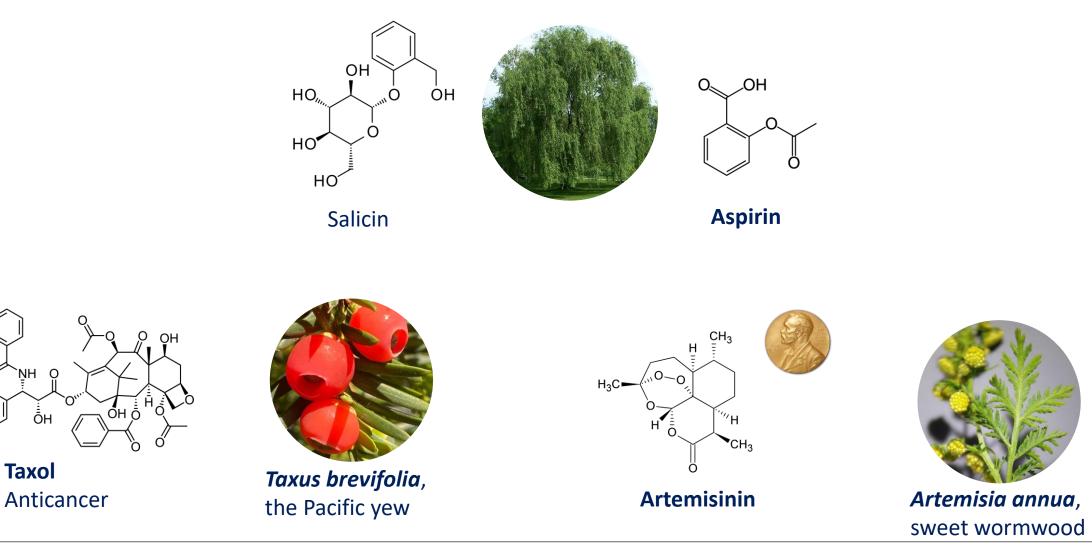
Since then, NPs became a **Prominent Source of Drugs**

Ú,

NH 0

Taxol

ŌН



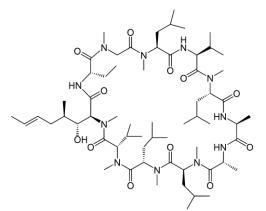
Plants (25%), microorganisms (13%) and animals (about 3%)

Drugs from bacterial and fungal NPs

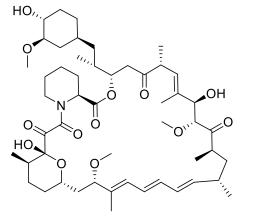
Penicillium fungus

Penicillin G, antibiotic

Tolypocladium inflatum fungus



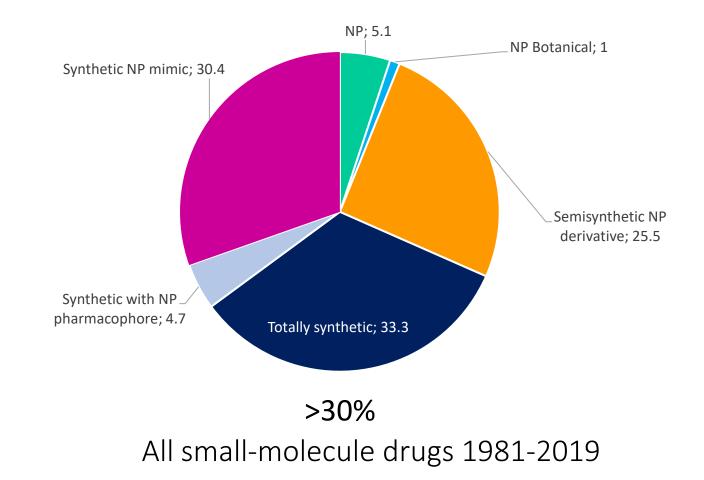
Ciclosporin, immunosuppressant



Streptomyces hygroscopus

Rapamycin, immunosuppressant

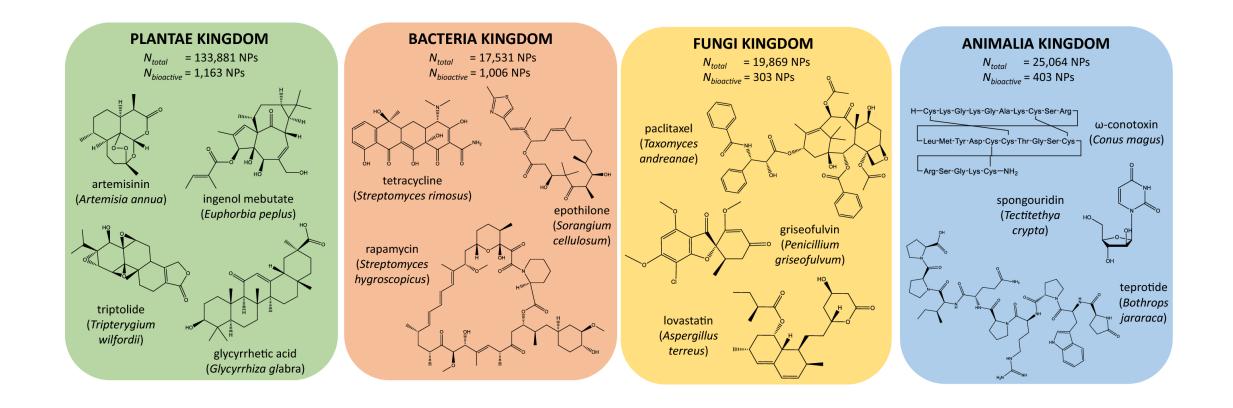
Many modern drugs originate from natural products (NP)



Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019

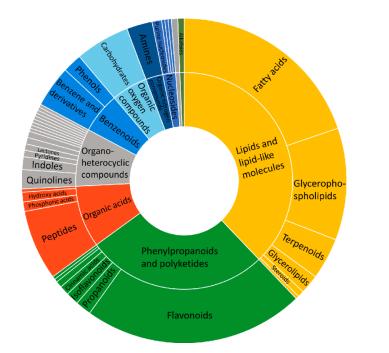
David J. Newman* and Gordon M. Cragg J. Nat. Prod. 2020, 83, 3, 770–803, <u>10.1021/acs.jnatprod.9b01285</u>

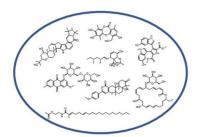
NPs exhibit unique diversity



Chassagne, F., Cabanac, G., Hubert, G. *et al.* The landscape of natural product diversity and their pharmacological relevance from a focus on the *Dictionary of Natural Products*[®]. *Phytochem Rev* **18**, 601–622 (2019). <u>https://doi.org/10.1007/s11101-019-09606-2</u>

Even classifying NPs is a non-trivial task

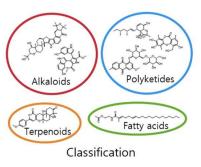




Molecular structures

Artificial Intelligence for Natural Products Classification

Deep Neural Networks using prior knowledge of NPs classification



Example of the ClassyFire classification Inner circle: superclass level, outer circle: class level.

NPs Structures differ from those of Synthetic Drugs

"Plants don't run"

"Natural products differ from synthetic molecules by having evolutionary history"

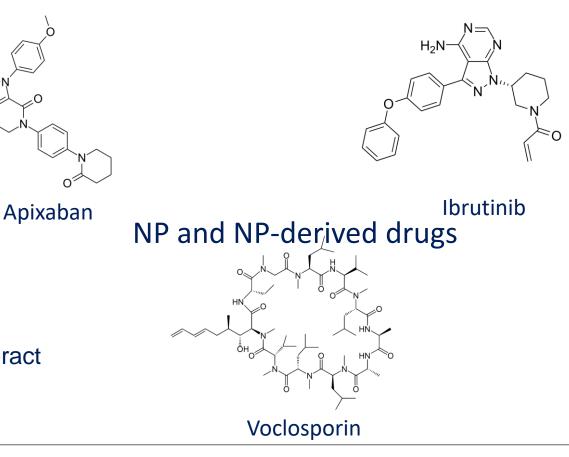
 H_2N

Synthetic drugs

Structurally more complex:

- Higher molecular mass
- More sp³ C
- Less N & halogens
- More H-bond acceptors & donors
- Lower logP
- Greater rigidity but "more 3D"

primarily recognized as **privileged structures** to interact with protein drug targets



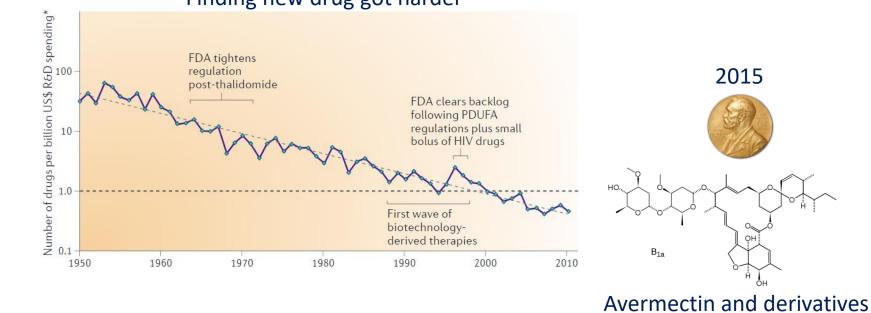
Decline of NP in pharma Science

Drug Discovery and Natural Products: End of an Era or an Endless Frontier?

Diagnosing the decline in pharmaceutical R&D efficiency

Jack W. Scannell 🖂, <u>Alex Blanckley</u>, <u>Helen Boldon</u> & <u>Brian Warrington</u>

Nature Reviews Drug Discovery 11, 191–200 (2012) Cite this article

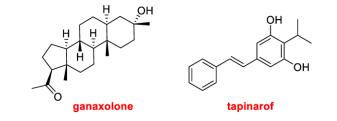


Finding new drug got harder

Table 1Big/medium Pharma Companies which have cur-
rently ceased (between 2000 and 2013) or are still
bioprospecting

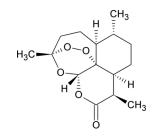
JESSE W.-H. LI AND JOHN C. VEDERAS DOI: 10.1126/science.1168243

Arrest	Continuation			
Abbott	Dabur			
Astellas	Eisai			
Bayer	Novartis			
Boehringer Ingelheim	Otsuka			
Bristol-Myers Squibb	Pierre Fabre			
Daiichi Sankyo	Piramal			
Eli Lilly				
GlaxoSmithKline				
Johnson and Johnson				
Kyowa Hakko				

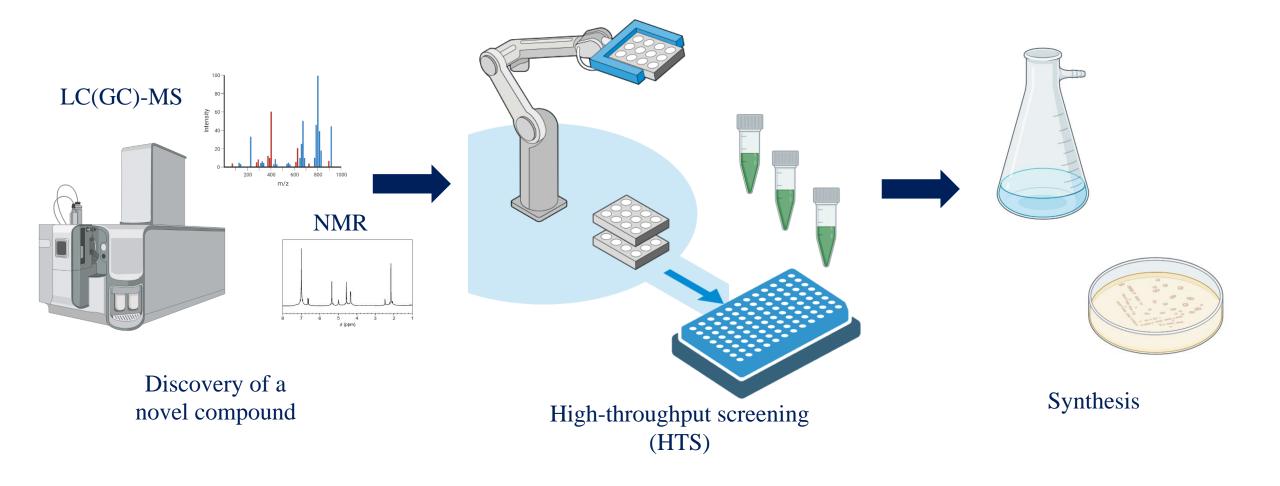


37 new drugs approved by FDA

2022



Milestones in the NP-driven drug discovery



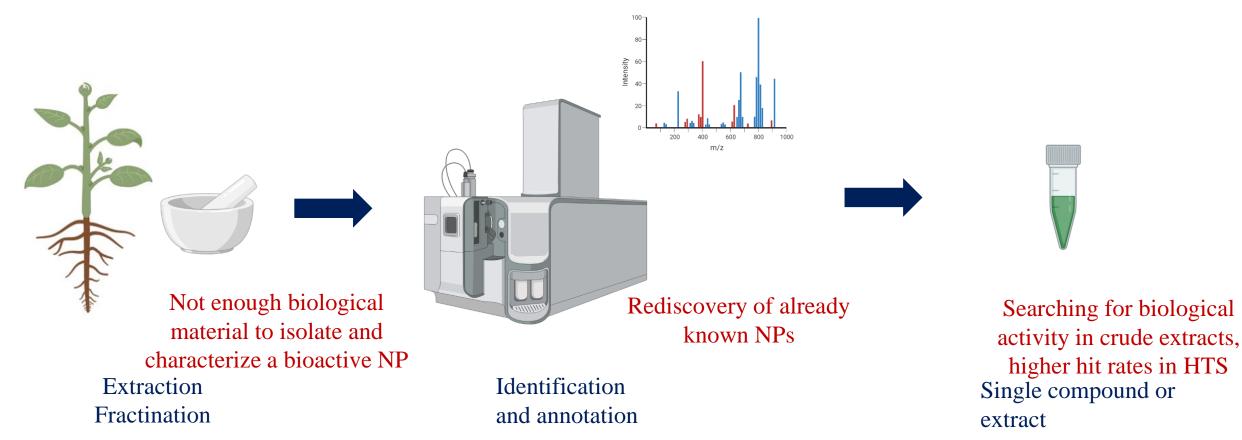
Grind-and-find approach

doesn't work that well

And largely relies on serendipity

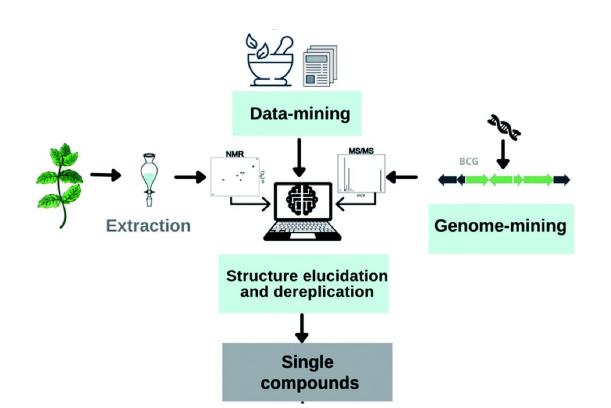
Dereplication:

- Time
- Money
- Repeated efforts



Computer-assisted discovery of NPs

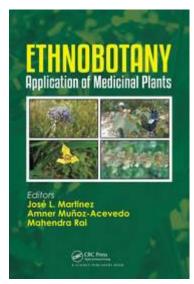
- Data mining into traditional medicine, papers, and plant databases
- Predicting chemical structures from microbial genomes
- Automating NP dereplication process



Saldívar-González, F. I., et al. "Natural product drug discovery in the artificial intelligence era." *Chemical Science* 13.6 (2022): 1526-1546. <u>10.1039/d1sc04471k</u> Atanasov et al. "Natural products in drug discovery: advances and opportunities" *Nature Rev.* 20 (2021)

https://doi.org/10.1038/s41573-020-00114-z

NPs Databases



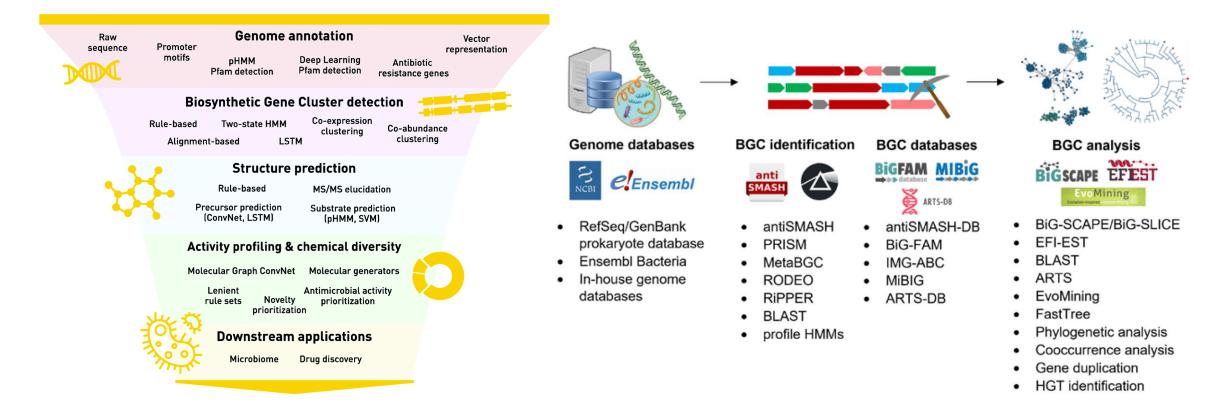
Dictionary of Natural Products >200k NPs

>400k NPs

TM-MC Database of medicinal plants

Chen, (2017) Data Resources for the Computer-Guided Discovery of BioactiveNatural Products. J. Chem. Inf. Model. 2017. <u>10.1021/acs.jcim.7b00341</u> Rutz, (2022) The LOTUS initiative for open knowledge management in natural products research. eLife 11:e70780. <u>https://doi.org/10.7554/eLife.70780</u>

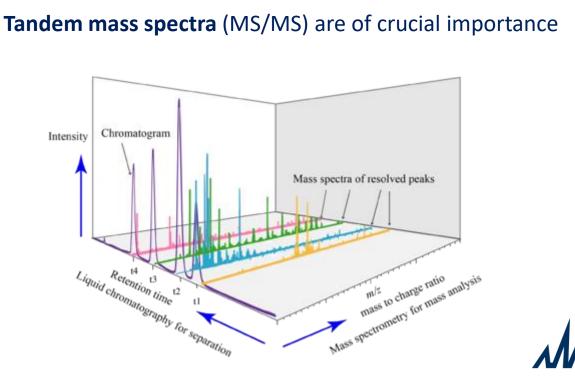
Genomic mining



The application potential of machine learning and genomics for understanding natural product diversity, chemistry, and therapeutic translatability. Prihoda et al. *Natural Products Reports, 2021.* <u>https://doi.org/10.1039/D0NP00055H</u> Targeted Large-Scale Genome Mining and Candidate Prioritization for Natural Product Discovery. Malit et al. *Mar. Drugs 2022, 20*(6), 398; <u>https://doi.org/10.3390/md20060398</u>

MS-based Untargeted Metabolomics

Chromatographic feature detection and alignment



Multiple kernel learning supported by fragmentation trees

Spectral data from MS as an additional tool in dereplication

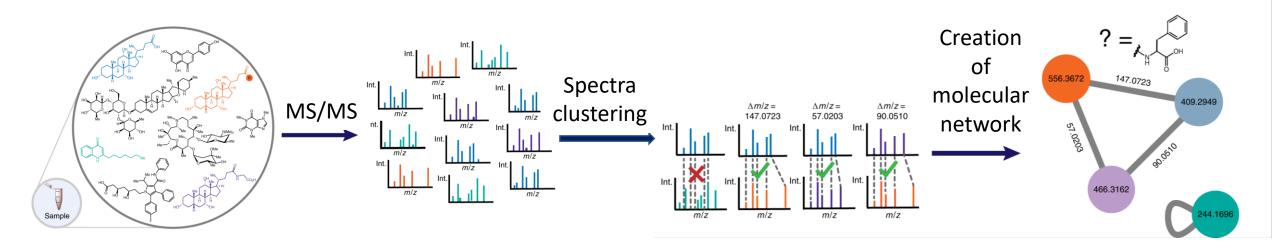
Public repositories

<u>Mass</u> Spectrometry <u>Interactive</u> <u>V</u>irtual <u>Environment</u>

Search Parameters	Spectrum Peaks Precursor M/Z	Reporting Information				
0.7	1044.66	MASST Analysis				
Minimum Matched Peaks	Peaks	Email address				
6	Enter peaks here in the follow format "mass intensity", one per line separated by white space	name@example.com				
Parent Mass Tolerance	(space or tab).	GNPS Login				
2.0	For Example: 463.381 43.591	GNPS Username (optional)				
Fragment Mass Tolerance	693.498 119.206 694.496 42.985	GNPS Password				
0.5	707.494 508.18	GNPS Password (optional)				
Analog Search	708.512 197.117 709.558 18.679 723.4 43.831					
No	▼ 800.494 476.556					
Public Databases to Search		0				
Non-redundant MS/MS	×					
Populate Demo	MASST Molecule					

Wang, M., Jarmusch, A.K., Vargas, F. *et al.* **Mass spectrometry searches using MASST**. *Nat Biotechnol* **38**, 23–26 (2020). <u>https://doi.org/10.1038/s41587-019-0375-9</u>

GNPS Molecular Networking



Querying of nodes against public datasets

Reproducible molecular networking of untargeted mass spectrometry data using GNPS Allegra T. Aron et al. *Nature Protocols* **volume 15**, pages1954–1991 (2020) DOI https://doi.org/10.1038/s41596-020-0317-5

Using public data to prioritize extracts

Prior	rity Sco	ore PS	5 =	w ₇ FC	+	w ₂ L	C +	w ₃ C	<mark>C</mark> +	w₄S0	C	
esults table		Feature specificity		com repo	nber of pounds orted in ie <i>sp</i> .	cor rep	mber of npounds orted in e genus	Numbe compou reporte the fan	inds I d in	New chemical classes in the <i>sp</i> .		nemical in the nus
(Species				1		17-	/		I I	,	
Sample ID	I		FC	LC		1	1	SC	CC	1	i i	PS
¥	I I V	i ↓ ♥	¥	¥	I I W	i ↓ ▼	I V	¥	¥	I I ₩	¥	¥
Sample 1	sp. A	0.83	0.67	0.996	0	0	20	• 1	1	a,b,c	a,c	3.67
Sample 2	<i>sp</i> . B	0.74	0.60	0.97	43	329	500	• 1	0	NA	NA	2.57
Sample N	sp. N	0.57	0.57	0.89	212	732	1 k	0 0	1	d,e,v	d,e,v	2.46

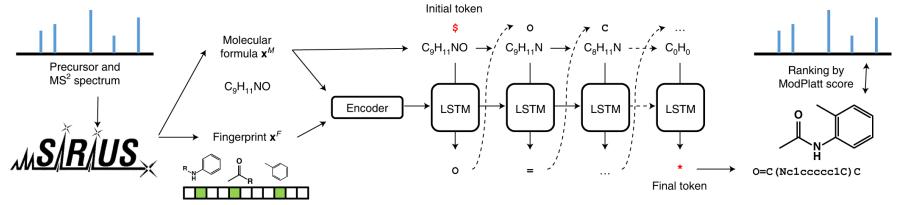
FC - Feature component
 LC - Literature component
 CC - Class component
 SC - Similarity component
 w - User-defined weights

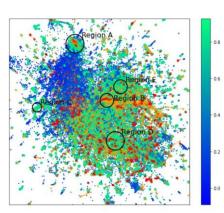
Quiros-Guerrero LM, Nothias LF, Gaudry A, Marcourt L, Allard PM, Rutz A, David B, Queiroz EF, Wolfender JL. *Inventa*: A computational tool to discover structural novelty in natural extracts libraries. Front Mol Biosci. 2022 Nov 11;9:1028334. doi: 10.3389/fmolb.2022.1028334

Deep learning applications to

accelerate metabolomic research

'inverse problem' of mass spectrometric molecular identification

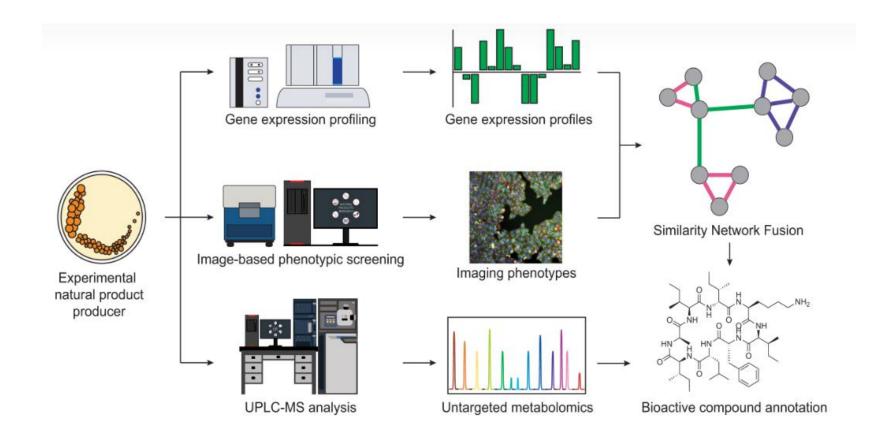




MSNovelist: de novo structure generation from mass spectra. <u>Stravs</u> et al. <u>Nature</u> <u>Methods</u> volume 19, pages 865–870 (2022). <u>https://doi.org/10.1038/s41592-022-01486-3</u>

MS2Prop: A machine learning model that directly predicts chemical properties from mass spectrometry data for novel compounds. *bioRxiv preprint*. Voronov et al. <u>https://doi.org/10.1101/2022.10.09.511482</u>

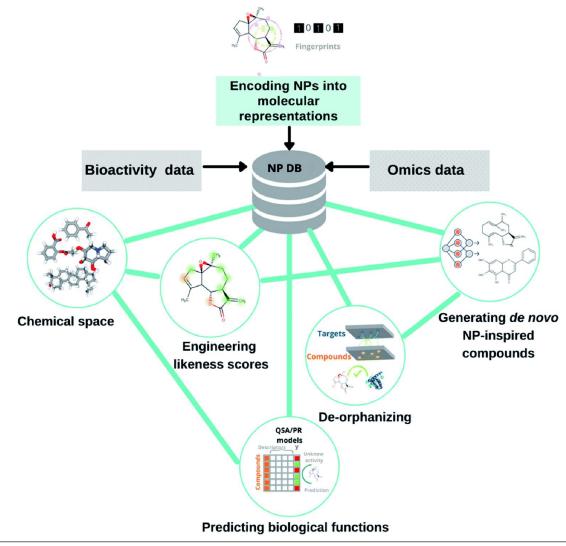
UMAP of a sub-sample of unlabeled MS/MS spectra from GNPS. Red points – MS/MS spectra of FDA-approved drugs (not NPs)



High-throughput functional annotation of natural products by integrated activity profiling <u>Suzie K. Hight</u> et al., PNAS, **2022**

https://doi.org/10.1073/pnas.220845811

After NP identification, what's next?

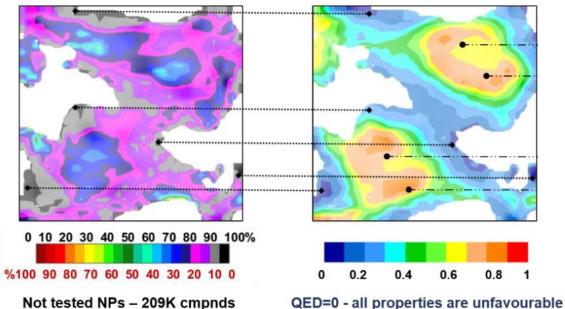


- Mapping NPs in the chemical space
- De-orphanizing
- Generating *de novo* NP-inspired compounds

Saldívar-González, F. I., et al. "Natural product drug discovery in the artificial intelligence era." *Chemical Science* 13.6 (2022): 1526-1546. <u>10.1039/d1sc04471k</u>

Chemical space of NPs

Biologically tested NPs-45K cmpnds



QED=0 - all properties are unavourable QED=1 - all properties are favourable

NP Navigator: A New Look at the Natural Product Chemical Space. Zabolotna et al, *J.Mol.Inf*, 2021. <u>10.1002/minf.202100068</u> NP-Scout: Machine Learning Approach for the Quantification and Visualization of the Natural Product-Likeness of Small Molecules. Chen et al. <u>Biomolecules.</u> 2019 Feb; 9(2): 43. <u>10.3390/biom9020043</u>

Natural Product-Likeness

Identification and visualization of

natural product-likeness

synthetic molecules

NP-Scout

NPs

PC1 (42%)

SMs

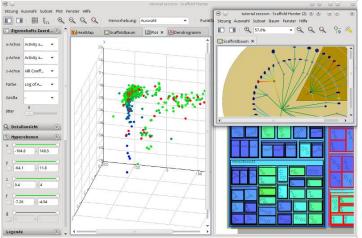
15

10

PC2 (14%)

natural products

Identifying scaffolds for further structural modifications



rdScaffoldNetwork rdkit.Chem.Scaffolds Cedrane scaffold HO Reduction of C=O on C9 Esterification of a-OH on C3 a.cs NP Chemset 19-30 NP Chemset 3 Mitsunobu inversion Hydrolysis Esterification of B-OH on C3 NP Chemset

Design and Synthesis of Natural Product Inspired Libraries Based on the Three-Dimensional (3D) Cedrane Scaffold: Toward the Exploration of 3D Biological Space Tajabadi et al, J. Med. Chem. 2018 https://doi.org/10.1021/acs.jmedchem.8b00194

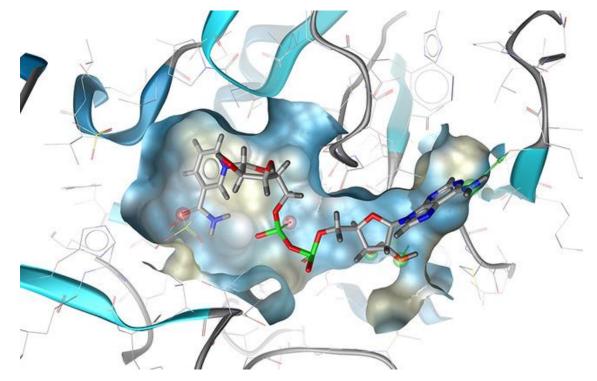
Pharmacophores & NPs

Identification of natural inhibitors of *Trypanosoma* brucei Glyceraldehyde-3-phosphate-dehydrogenase (*Tb*GAPDH)

Human African trypanosomiasis (HAT), or "sleeping sickness"

4803 NPs from MEGx database
3 structures (PDB-IDs: 2X0N, 3IDS and 1GYP)
4 pharmacophore models by MOE
Docking
Experimental testing
5 cmpds w/ >50 % inhibition at 50 μM

F. C. Herrmann, M. Lenz, J. Jose, M. Kaiser, R. Brun, T. J. Schmidt, *Molecules* 2015, 20, 16154–16169. doi.org/10.3390/molecules200916154



Pharmacophore models by LigandScout

Applications of the Pharmacophore Concept in Natural Product inspired Drug Design Seidel et al. J.Mol.Inf., 2020. <u>https://doi.org/10.1002/minf.202000059</u>

More successful examples of NP screening

DOI: 10.1002/minf.202000171

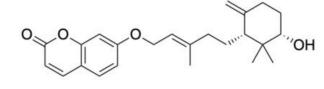
Cheminformatics in Natural Product-based Drug Discovery

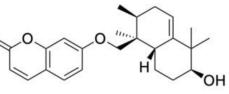
Ya Chen^[a] and Johannes Kirchmair*^[a, b]

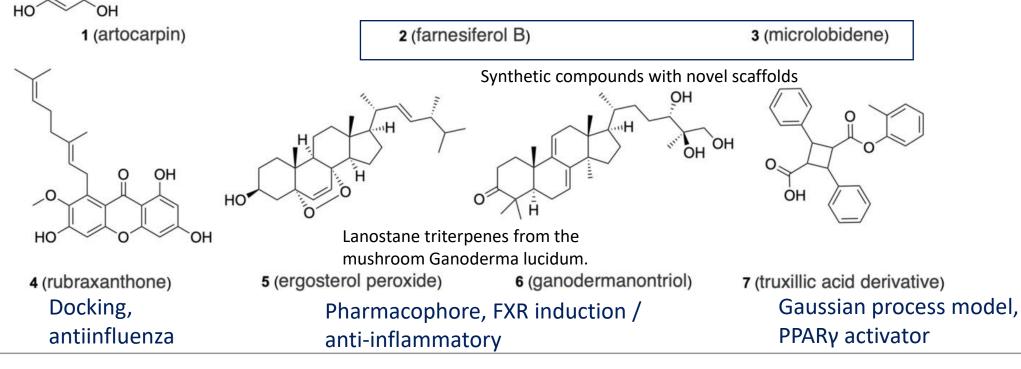
3D molecular shapebased screening, antiviral

OH

Pharmacophore + shape-base, activators of the G protein-coupled bile acid receptor 1

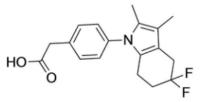




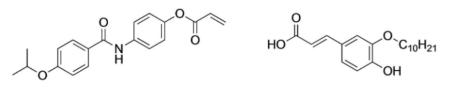


De novo design of NP-inspired molecules

- Diversity-oriented synthesis (DOS)
- Biology-oriented synthesis (BIOS)
- Design of Genuine Structures (DOGS)
- Deep Neural Networks (variety of approaches



DNN

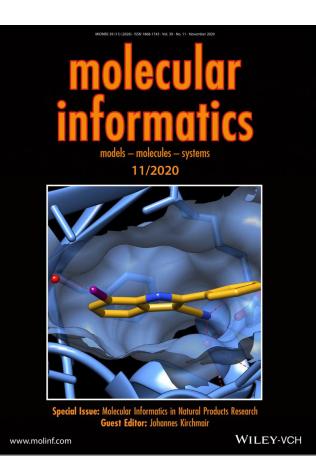


DOI: 10.1002/minf.202000171

Cheminformatics in Natural Product-based Drug Discovery

Ya Chen^[a] and Johannes Kirchmair*^[a, b]

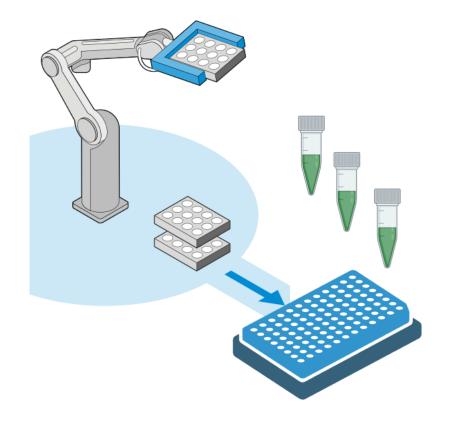
Recommended chemoinformatics read



Volume 39, Issue 11 <u>Special Issue:Molecular Informatics in Natural Products</u> <u>Research</u> November 2020

https://onlinelibrary.wiley.com/toc/18681751/2020/39/11

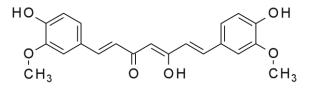
HTS problems



Very high (or low) hit rates in HTS assays

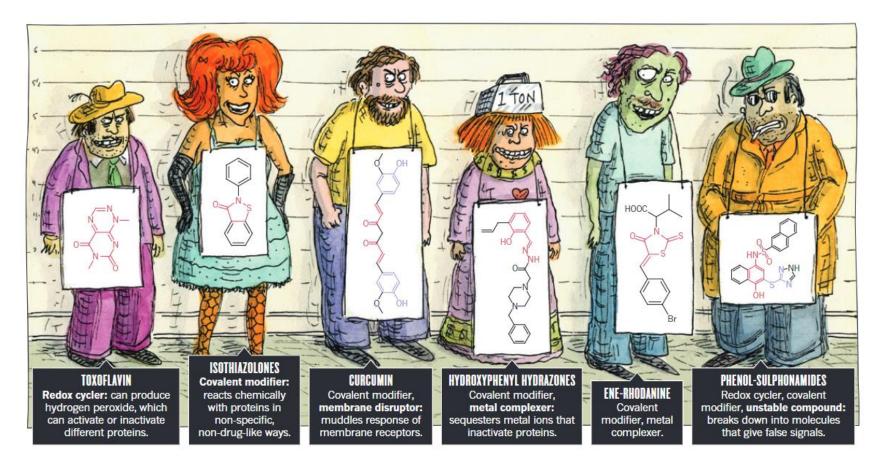
- Polyphenols quench fluorescence
- Highly fluorescent or coloured compounds interfere with colorimetric or fluorescent endpoint

Enol form of curcumin



Creating and screening natural product libraries. Brice A. P. Wilson *Nat. Prod. Rep.*, 2020, 37, 893-918. <u>10.1039/C9NP00068B</u>

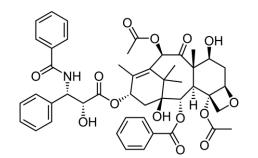
All those PAINS



Chemistry: Chemical con artists foil drug discovery. Baell & Walters. *Nature* volume 513, pages481–483 (2014) <u>https://doi.org/10.1038/513481a</u> Feeling Nature's PAINS: Natural Products, Natural Product Drugs, and Pan Assay Interference Compounds (PAINS). Jonathan B. Baell, *J. Nat. Prod.* 2016, 79, 3, 616–628. <u>https://doi.org/10.1021/acs.jnatprod.5b00947</u>

Let's imagine a promising bioactive NP is identified

But what about synthesis and scaling up?



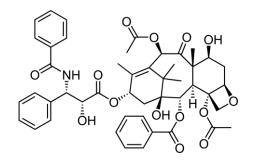
Taxol (Paclixatel)

News

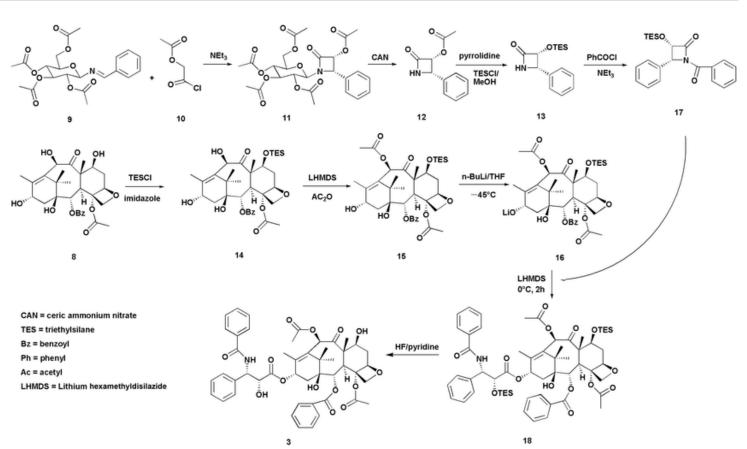
Tree that provides paclitaxel is put on list of endangered species

BMJ 2011 ; 343 doi: https://doi.org/10.1136/bmj.d7411 (Published 15 November 2011)

Synthesis alone is infeasible



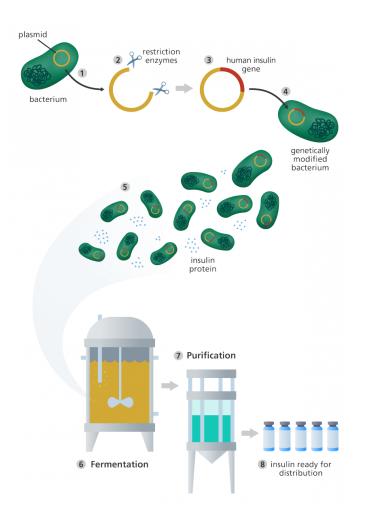
Taxol (Paclixatel)



- Robert Holton's group suggested complete synthesis
- With ability to produce 11.6 mg of taxol

- Semi-synthesis from deacetylbaccatin extracted from European yew (Liu, Gong, Zhu, *RSC Adv*, 2016)
- 2017: 2600 kg produced

How genomic knowledge can be used?



1951: 10,000 POUNDS OF PIG Pancreases Make 1 Pound of Insulin

TODAY: Genetically Engineered Bacteria Produce Animal-Free Insulin

An Engineered Microbial Platform for Direct Biofuel Production from Brown Macroalgae

Wargacki et al., Science 2012

High-level semi-synthetic production of the potent antimalarial artemisinin Paddon *et al.*, *Nature* 2013 Metabolic Engineering for the Biosynthesis of Longevity Molecules Rapamycin and Resveratrol Ye & Bathia, *Industrial Biocatalysis* 2014

A microbial supply chain for production of the anti-cancer drug vinblastine

Zhang et al., Nature 2022

Perspectives and Sustainability

Are we seeing a resurgence in the use of natural products for new drug discovery?

Feng Li 🚬, Yongli Wang, Dapeng Li, Yilun Chen & Q. Ping Dou

Natural Product Research: An Immense Hope and Sustainability in Present Time

Dipankar Ghosh*

THE LANCET

CORRESPONDENCE | VOLUME 398, ISSUE 10303, P840-841, SEPTEMBER 04, 2021

Pharmaceutical companies should pay for raiding nature's medicine cabinet

Adam D Canning 🖾 • Russell G Death • Nathan J Waltham

Published: August 11, 2021 • DOI: https://doi.org/10.1016/S0140-6736(21)01686-X

- the higher rigidity of NPs can be valuable in drug discovery tackling protein–protein interactions
- NPs as a source of oral drugs 'beyond Lipinski's rule of 5'
- Novel antibiotics able to tackle antibiotic resistance?

Take away messages

- State-of-art analytical and computational methods give a new boost to NP-driven drug discovery
- Problems for the different discovery stages mirror each other, which might provide room for collaboration
- Interest in natural products as drug leads is being actively revitalized

Thank you for your attention!

