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• Metabolism is the main clearance pathway of 
75 to 90% of all drugs
• Drugs and drug-like compounds have, on 

average, metabolites1

• Only 3% of metabolites are confirmed to 
maintain their pharmacological activity1

• At least 7% of metabolites are known to be 
reactive and/or toxic1

1Testa et al, Drug Discov Today 2012, 17, 549-560. doi: 10.1016/j.drudis.2012.01.017
Kirchmair et al., Nat Rev Drug Discov 2015, 14, 387-404. doi: 10.1038/nrd4581 Page 5

Understanding xenobiotic metabolism is 
key to the design of safe and efficacious small molecules

Opportunities

Detoxification

Targeted (de-) activation
• Organisms, tissues, cells

Challenges and Risks

(De-) activation

Toxification

Changes in distribution

Drug-drug interaction

Drug resistance
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• Diverse and complex families of enzymes
• Varying expression patterns among different species, organs and tissues
• Inter-individual factors: genetic differences, polymorphisms
• Intra-individual factors: age, pregnancy, disease, stress, diet, etc.
• Synergistic collaborations with transporters
• Important but weakly understood role of gut microbiota in metabolism

Testa et al, Drug Discov Today 2012, 17, 549-560. doi: 10.1016/j.drudis.2012.01.017 Page 6

The metabolic system is highly complex and adaptive

The evolutionary logic and inevitability of xenobiotic
metabolism
Given that the endless accumulation of even nontoxic xenobiotics

in organisms is incompatible with their survival, natural selection

has led to the evolutionof protective strategies of whichmetabolism

is but one [49]. Indeed, we owe our current biological protection

against foreign compounds to the innumerable natural xenobiotics

in existence before the appearance of humankind [50]. Schemati-

cally, three protective strategies have emerged: (i) passively or

actively inhibited entry into an organism or organ, (ii) passive or

active excretion (physical elimination), and (iii) metabolism (che-

mical elimination) as synonymous with biotransformation. In a

global perspective, the biotransformation strategy has evolved to

increase the hydrophilicity of lipophilic xenobiotics and hence

facilitate their excretion by the renal, biliary or other routes [51–53].

However, this view is simplistic and outdated, and several

biological mechanisms intervene in metabolite disposition, such

that many metabolites do indeed circulate rather than being

rapidly excreted [54]. This situation is in fact a favourable one

as far as drug discovery is concerned. However, it also implies that

practically all new chemical entities, lead compounds, clinical

candidates, drug candidates and drugs are susceptible to biotrans-

formation. However, few exceptions to this rule exist, namely

highly polar drugs, such as zanamivir.

The relative importance of drug-metabolising enzymes in drug
discovery
Numerous enzyme superfamilies and families have a role in drug

metabolism, but the relative involvement of these enzymes, both

in quantitative and qualitative terms, remains a matter of debate.

When listening to some medicinal chemists, one gets the feeling

that drug metabolism begins and ends with cytochrome P450, and

that the word ‘metabolism’ implicitely implies ‘by cytochrome

P450’.

The present meta-analysis does indeed confirm the primary role

of CYP-catalysed reactions in in vitro and in vivo systems, but it also
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FIGURE 5

Distribution of metabolites according to enzyme (super) families or categories. The percentages shown refer to 6967 enzyme occurrences = 100%; they were
rounded to two significant digits. The colour code is as follows: Redox reactions blue; hydrolyses yellow; conjugations red. Alternating dark and light fields are used
simply for graphical clarity. Starting in the upper-right quadrant, the boxes show (i) Reactions catalysed by cytochromes P450, (ii) Reactions catalysed by
dehydrogenases, (iii) Reactions catalysed by flavin-containing monooxygenases, (iv) Reactions catalysed by xanthine oxidoreductase and aldehyde oxidase (no
box shown), (v) Reactions catalysed by peroxidases, (vi) Reactions catalysed by other reductases, (vii) Reactions catalysed by other oxidoreductases or reactions of
auto-oxidation (no box shown), (viii) Reactions catalysed by hydrolases, (ix) Non-enzymatic hydrolyses or (de)hydrations,(x) Reactions catalysed by UDP-
glucuronosyltransferases, (xi) Reactions catalysed by sulphotransferases, (xii) Reactions catalysed by glutathione S-transferases and associated enzymes, (xiii)
Reactions catalysed by N-acetyltransferases, (xiv) Reactions catalysed by acyl-coenzyme A ligases 1 associated enzymes, (xv) Reactions catalysed by
methyltransferases, (xvi) Reactions catalysed by other transferases or non-enzymatic reactions of conjugations. Abbreviations: CYP, cytochrome P450; FMO, flavin-
containing monooxygenases; GST, glutathione S-transferase; NATS, N-acetyltransferases; SULTS, sulphotransferases; UGTs, UDP-glucuronosyltransferases.
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formation of a highly reactive and toxic quinoneimine (Reaction

type 06a, plus the code ‘T’ for toxicity and/or reactivity). This

reaction occurred twice, for the deuterated and undeuterated para-

cetamol. The individual reactions were then entered into the Micro-

soft SQL Database, while the global database report enabled

immediate control of each entry.

A first quantitative overview
The first selection process produced a total of 903 papers (Supple-

mentary material), of which 804 remained once redundant papers

were discounted. A total of 1171 distinct substrates were found and

analysed, 747 (!63%) being compounds of medicinal interest and

424 (!36%) other xenobiotics. Rather than being of negligible

interest to medicinal chemists, these other xenobiotics were in fact

bioactive ones, such as agrochemicals and pollutants whose tox-

ification and detoxification mechanisms are of obvious relevance

to drug discovery.

The 1171 substrates in the database yielded 6767 distinct meta-

bolites (a mean of 5.78 per substrate); 201 (3%) of these were

reported or known to be active, whereas 473 (7%) were reported to

be toxic or featured a highly reactive functional group forming

adducts (e.g. quinones).

‘Phase I’ versus ‘Phase II’ metabolic reactions: how real?
A global breakdown reveals the redox reactions accounted for 57%

of all 6767 metabolites, hydrolyses for 10% and conjugations for

33%. However, such a picture is too coarse to impact on the ‘Phase

I versus Phase II’ debate [43,44].

A more informative view can be found in Fig. 2, which shows how

the relative importanceof the three reaction classes evolves fromthe

first to the second to later generations of metabolites (Table 3). First-

generation metabolites were formed mainly (almost 70%) by redox

reactions, whereas conjugates represented approximately 22%. In

the second generation, the contribution of redox reactions had

decreased to approximately 50% whereas conjugations had

increased to 37%. In the third and later generations, both redox

and conjugation reactions accounted for the same proportion

(!46%) of metabolites. The proportion of metabolites generated

by reactions of hydrolysis did not vary significantly from one

generation to another and remained within a range of 8–12%.

Figure 2 demonstrates the inadequacy of the ‘Phase I versus

Phase II’ classification, which assumes the biotransformation of

xenobiotics to begin with redox or hydrolysis reactions (‘Phase I’),

followed in subsequent metabolic steps by conjugations (‘Phase

II’). Such a schematic view appears neat yet is misleading. Whereas

Fig. 2 confirms that the contribution of ‘Phase I’ reactions

decreases in later generations while that of conjugations increases,

it also shows that the trend stops before the contribution of

conjugations dominate that of redox reactions as implicit in the

‘Phase I’ and ‘Phase II’ terminology.

Distribution of metabolites according to reaction types and
generations
Figure 3 breaks down the major reaction classes into the individual

reaction types as listed in Table 2. The actual numbers of meta-

bolites are reported in Table 3. Reactions of Csp3-, Csp2- and Csp-

oxidation together accounted approximately 345% of all metabo-

lites (Fig. 3), while redox reactions to and from the carbonyl group

formed 8.3% of metabolites. Redox reactions at nitrogen-contain-

ing groups led to approximately 5.5% of metabolites, whereas

redox reactions at sulphur-containing groups formed approxi-

mately 2.7% of metabolites. Redox reactions to form or reduce

quinones and analogues accounted for 4.0% of all metabolites.

Only 1.7% of metabolites were formed by unclassified redox

reactions, mainly reduction of olefinic bonds.

Reactions of hydrolysis and hydration were mainly ester hydro-

lyses (!3.8%), while unclassified reactions such as oxime or imine

hydrolysis, hydration of iminium groups or other electrophiles,

hydrolytic dehalogenation or hydration of antitumuor platinum

compounds accounted for almost 2.8% of metabolites.

Conjugations reactions are dominated by glucuronidations

(! 14%), followed by enzymatic (or non-enzymatic) conjugations

with GSH (or in a few cases with cysteine or N-acetyl-Cys) (8.0%).

Sulphonations of hydroxy or amino groups represented 4.8% of

metabolites.

Which reactions produced active metabolites?
Table 3 also features a breakdown of the pharmacologically active

metabolites in our analysis. The total percentage (close to 3%) is in

fact low, much lower than one would expect [8]. This appears to be

a bias in the meta-analysis owing to several factors. Indeed, only

approximately 64% of all substrates were compounds of medicinal

interest, and many of these were developmental compounds the

activity of whose metabolites was either unknown at the time or

not reported for whatever reason. Nevertheless, a few conclusions

can be proposed, keeping in mind the small number of metabolites

included.

Table 3 reveals the vastly predominant role played by reactions

of C-hydroxylation and ester hydrolyses in generating active

metabolites (almost 36% and 37%, respectively). The role of ester

hydrolysis should not come as a surprise given the current interest

in prodrugs and specifically carrier-linker prodrugs [6,9,10]. As

for the pharmacological significance of alkyl and aryl hydroxyla-
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FIGURE 2

Distribution of metabolites according to generations. In each generation, the
three percentages add up to 100% of the metabolites in that generation; this
was done to avoid the artefactual bias caused by the smaller number of total
metabolites in the second (2165) and subsequent (1792) generations
compared with the first one (2810). Abbreviation: Gen: generation.
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CYP 2E1 
(PDB-ID: 3e6i) 
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(PDB-ID: 1pq2) 
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(PDB-ID: 3dax) 

CYP 2A6 
(PDB-ID: 2pg5) 

CYP 46A1 
(PDB-ID: 2q9g) 

Kirchmair et al., Nat  Rev Drug Discov 2015, 14, 387-404. doi: 10.1038/nrd4581

CYPs are highly malleable and promiscuous
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CYP3A4 structures bound with 
metyrapone

erythromycin

Table based on the work of Guengerich, In Drug Metabolism Prediction, Wiley-VCH 2014.

Structural data on CYPs have become available but enzyme 
malleability remains challenging for drug design

Coverage human CYPs with X-ray structures

Sterols Xenobiotics Fatty acids Eicosanoids Vitamins Unknown

1B1 1A1 2J2 4F2 2R1 2A7
7A1 1A2 4A11 4F3 24A1 2S1
7B1 2A6 4B1 4F8 26A1 2U1
8B1 2A13 4F12 5A1 26B1 2W1

11A1 2B6 8A1 26C1 3A43
11B1 2C8 27B1 4A22
11B2 2C9 4F11
17A1 2C18 4F22
19A1 2C19 4V2
21A2 2D6 4X1
27A1 2E1 4Z1
39A1 2F1 20A1
46A1 3A4 27C1

51A1 3A5

3A7
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Thiophene is a safety risk
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As always, there are exceptions…

Br–

CH3
N+

CH3
O O

O

OH S

S

Tiotropium bromide:
no liver toxicity observed

What makes the difference?
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• Block/induction of a specific metabolic enzyme causes substantial (>10-fold) shift in 
pharmacokinetics of another drug
• Particularly problematic if a drug is metabolized via
• a single enzyme
• polymorphous enzymes

(i.e. enzymes with genetic variants;
e.g. CYP2D6, 2C19, and 2C9)

• Mibefradil
• T-type Ca2+ channel blocker for 

treatment of hypertension
• Withdrawn 1997 due drug-drug interactions 

with 3A4 substrates such as simvastatin
• ~70% of CYP3A4 activity is lost in the first minute of incubation with mibefradil1

1 Foti, Drug Metab Dispos 2011, doi:10.1124/dmd.111.038505 

Drug-Drug Interactions (DDIs)

H3C
O

O

O

N

CH3

NHN

F CH3

H3C
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Kirchmair et al., Nat Rev Drug Discov 2015, 14, 387-404. doi: 10.1038/nrd4581

Modern analytical methods and biosystems for metabolism 
research are very powerful but resource-demanding

incubations with 
individual drug-

metabolizing enzymes

microsomal incubations 
+ NADPH/UDPGA

incubations with hepatocytes:
fresh, cryopreserved or 
immortalized cell lines

specific reactive metabolite 
trapping in microsomal 

incubations

animal models

liver S9 fraction 
(cytosolic + microsomal 

fractions)

in
cr
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g 
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m
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Solubility

Plasma protein binding

Tissue permeability

Transporter interaction

Concentration at target site

…

Pharmacophoric and shape 

constraints of the catalytic 

site

Compound reactivity

Ligand orientation in the 

binding site

(Time-dependent) inhibition 

and induction of 

metabolizing enzymes

Reaction rates

Microbiome

…

Gain or loss of desired 

activity

Gain or loss of toxicity

Effects on the organism

…

Absorption and Distribution

Interaction with metabolic 
enzymes

Sites of Metabolism

Metabolite structures

Physiological relevance 
of metabolites

Kirchmair et al., Nat Rev Drug Discov 2015, 14, 387-404. doi: 10.1038/nrd4581

Simulation of metabolism requires the consideration of many components but
current in silico models consider only a single one or a few
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Computational approaches to the  
prediction of xenobiotic metabolism

Enzyme 

structure, 

function, 

mechanisms

Interaction 

of proteins 

with small 

molecules

Homology modeling

Molecular dynamics simulations

Quantum mechanics

QM/MM simulations

Ligand placement methods

QSAR models

Machine learning models

Free-energy calculations

Biotrans-

formation 

rates

Metabolite 

structures

Bioactivity, 

toxicity of 

metabolites

QM/MM simulations

QSAR models

Knowledge-based systems

Machine learning models

Knowledge-based systems

2D and 3D similarity approaches

QSAR models

Pharmacophore models

Data mining and machine learning

Knowledge-based systems

Molecular interaction fields

Reactivity models (QM)

QSAR models

Data mining and machine learning

Ligand placement methods

Sites of 

metabolism

Page 14
Tyzack and Kirchmair, Chem Biol Drug Des 2019, 93, 377–386. doi: 10.1111/cbdd.13445
Kirchmair et al., Nat Rev Drug Discov 2015, 14, 387-404. doi: 10.1038/nrd4581
Kirchmair (Ed.), Methods and Principles in Medicinal Chemistry: Drug Metabolism Prediction. Wiley-VCH, 2014
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Available data on xenobiotic metabolism

Data on Resources

Interaction of small 
molecules with 
metabolizing enzymes

Zaretzki dataset
ADMEDB (Fujitsu)
BindingDB
ChEMBL
DrugBank (Univ. Alberta)
MetraBase (Cambridge Univ.)
PubChem
SuperCyp (Charité)

Metabolites EAWAG-BBD
GOSTAR Drug Database (GVK BIO)
HMDB
KEGG
MetaBase (MetaDrug)
Metabolite
METLIN
MetXBioDB

Sites of metabolism (SoMs) Zaretzki dataset
MetaQSAR

Drug-drug interactions DIDB (Drug Interaction Database)

Biomolecular structures of 
metabolic enzymes

PDB

Not stored in a 
machine-readable 

format

Incomplete, 
inaccurate, 

inconclusive

Limited 
comparability and 

relevance

Limited quantity 
and coverage

Challenges and limitations:

˜1200 Parent molecules annotated with ~2000 metabolites

~2300 Molecules with annotated SoMs (phase I and II)

~120 X-ray structures of CYPs

~700 Molecules with annotated SoMs (CYPs only)

˜130k Biotransformations
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• Several good models available for predicting 
CYP inhibition and substrate selectivity
• Predictors dominated by machine learning 

models

Johannes Kirchmair Page 16

Q1: What metabolic enzymes is my 
small-molecule likely to interact with?

− Many models lack definition of applicability 
domain and indicators of prediction confidence

− Applicability domain quite narrow (due to lack of 
data for training)

+ Good classification accuracy within 
the applicability domain

N
O

N

Cl

Cl substrate of

inhibitor of

2E1?

2A6?
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Name Scope Core components Description Licence Exec.

VirtualToxLab
(Biographics Laboratory 3R)

• Binder-nonbinder classification for 5 CYPs Docking + QSAR Uses flexible docking in combination with a 
multi-dimensional QSAR approach

Comm. Local

Percepta P450 Specificity
module (ACD/Labs)

• Substrate-nonsubstrate classification for 5 CYPs
• Inhibitor-noninhibitor classification for 5 CYPs

PLS Collection of models for predicting CYP 
inhibitors and substrates

Comm. Local

ADMEWORKS Predictor 
(Fujitsu)

• Substrate-nonsubstrate and inhibitor-
noninhibitor classification for 2 CYPs

Multiple linear 
regression

Collection of QSAR models for the 
prediction of Ki and Km values

Comm. Local

ADMET Predictor Metabolism 
module
(Simulations Plus)

• Substrate-nonsubstrate classification for 9 CYPs
• Inhibitor-noninhibitor classification for 5 CYPs

Artificial neural network 
ensemble

Predictor based on a large, curated data 
set. Also predicts Km and Vmax values for 
hydroxylation reactions, and Clint resulting 
from the action of 5 CYPs

Comm. Local

WhichCYP • Inhibitor-noninhibitor classification for 5 CYPs SVM Trained on the PubChem Bioassay 1851 
dataset. AUCs between 0.88 and 0.95

Free Web

SwissADME • Inhibitor-noninhibitor classification for 5 CYPs SVM Trained on the PubChem Bioassay 1851 
dataset. AUCs between 0.81 and 0.91

Free Web

CypRules • Inhibitor-noninhibitor classification for 5 CYPs Decision trees Trained on the PubChem Bioassay 1851 
dataset. Classification accuracies > 90%

Free Web

CYPlebrity • Inhibitor-noninhibitor classification for 5 CYPs Random forest Trained on PubChem Bioassay, ChEMBL
and ADMEDB data. Trained on up to 
18815 known inhibitors and noninhibitors. 
MCCs of up to 0.70.

Free Web

WhichP450 (Optibrium) • Substrate-nonsubstrate classification for 7 CYPs Multi-class random 
forest model

Trained on measured data for 465 
compounds. Average AUC = 0.89 (5-fold CV)

Comm. Local

CypReact • Substrate-nonsubstrate classification for 9 CYPs Machine learning Trained on small dataset of approx. 1600 
compounds

Free Web

CYPstrate • Substrate-nonsubstrate classification for 9 CYPs Random forest Trained on approx. 1800 confirmed 
substrates and non-substrates. 
MCCs up to 0.85

Free Web



• Advantages
◦ More insight into the orientation of a ligand at the binding site
◦ Understand stereoselectivity in metabolism
• Disadvantages

◦ The usual docking problems, but CYPs are particularly challenging 
because of protein flexibility and lack of a defined pharmacophore

◦ Requires expert knowledge and only is usable with individual 
protein-ligand pairs

Johannes Kirchmair Page 18

Ligand specificity prediction: Structure-based approaches
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Martiny et al., Bioinformatics 2015, 31, 3930–3937. doi: 10.1093/bioinformatics/btv486

CYPs are highly malleable and promiscuous: 
docking approaches face challenges

Page 19
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We analyzed the differences in the binding site that could be in-
volved in discriminating inhibitors and non-inhibitors. MD1 struc-
ture shows enrichment close to the X-ray holo structure (Fig. S5A) 
and displays active site key residues slightly displaced (Fig. 5A), 
in particular the two Phe residues. MD2 structure (Fig. 5B) as 
MD1 structure has slightly displaced key residues and changed the 
orientation of F120. MD3 and MD4 structures (Fig. 5C) show 
conserved D301 and F120 positions, but a displacement of E216. 
The most striking difference is due to F483, which exhibits a com-
pletely different orientation. The MD5 and MD6 structures (Fig. 
5D) show significant structural variations. Indeed, while D301 has 
a well-conserved orientation, E216 is displaced and both Phe resi-
dues have completely different orientations compared to the X-ray 
structure. RMSD calculations between the MD and X-ray struc-
tures confirm these observations (Table 1). Highest RMSD values 
are obtained for MD3 to MD6 structures. MD3, MD4, MD5 and 
MD6 structures (Fig. 5C and D) show better enrichments of active 
compounds than the X-ray structure (Fig. S5B and C) having also 
a different orientation of F483. It seems that although both F120 
and F483 are responsible for the orientation of the ligands in the 
cavity, a displacement of F483 allows a better interaction with 
various ligands. It is also possible to see that a different orientation 
of F120 in addition to the F483 displacement (MD5 and MD6 
structures) (Fig. 5D), facilitates the interactions with bulky ligands. 
Thus, we have identified MD structures capable of binding small 
ligands into MD3 and MD4 structures (Fig. 5C), or bulky ligands 
into MD5 and MD6 structures (Fig. 5D). 
 
 
 

Structure MD1 MD2 MD3 MD4 MD5 MD6 

RMSD (Å)  1.53 1.49 1.81 1.95 1.69 1.90 

Table 1. RMSD of MD derived structures compared to the holo 
X-ray structure-binding site  

3.6 Small set of MD -derived structures best retriev-
ing the CYP2D6 binders 

We attempted to find a small pool of different structures able to 
bind different active compounds of CYP2D6. Keeping in mind the 
observed phenomenon of “ligand memory“ of the corresponding 
binding site (Rueda, et al., 2012), we considered three MD struc-
tures, MD2, MD4 and MD6, extracted from MD trajectories with 
the three different substrates, showing interesting differences in the 
binding site. These MD structures exhibit differences, particularly 
near to helices F’ and G’ (Fig. 4), but also different conformations 
of key binding site residues (Fig. 5). They all have a good drugga-
bility score (Table S1), as well as similar or better enrichment of 
CYP2D6 binders than the X-ray structures (Fig. S5). Thus, our 
MD-derived structures seem to present complementary binding 
pocket profiles permitting to accommodate different ligands. We 
calculated the combined enrichment of the three structures, MD2, 
MD4 and MD6, meaning that for each percent of the chemical 
library, we counted all different active molecules that are retrieved 
by these three structures. The combined enrichment of the three 
MD structures shows indeed better results. In fact, 70% of 
CYP2D6 binders were found in 35% of the ranked dataset when 
combining docking into the three MD structures (Fig. 6). These 
results demonstrated that we identified three complementary con-

formations of the active site that can accommodate the binding of 
diverse ligands.  

3.7 Structure-based QSAR classification models for 
CYP2D6 

 

Fig. 5. Key residues of binding sites of the MD-derived struc-
tures in comparison with the holo X-ray structure colored in 
cyan. A: MD1 is colored in mauve; B: MD2 is colored in blue; C: 
MD3 is colored in green and MD4 in salmon; D: MD5 is colored 
in yellow and MD6 in orange. 

Fig. 6. Enrichment curves obtained using docking into the 
structures: the X-ray ones: 2FQ9, 3QM4; the MD structures: 
MD2, MD4 and MD6; The combined enrichment is obtained by 
taking the best binding energies predicted by docking into 
MD2, MD4 and MD6 
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100 ns full-atom MD simulation
courtesy of Mark J. Williamson
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CYP 
isozyme

Inhibitors 
total

Inhibitors exclusively from  
ADMEDB

Noninhibitors
total

1A2 7391 693 7868

2C9 5033 741 9784

2C19 6235 534 8094

2D6 3711 708 12694

3A4 7763 1158 11052

Approved drugs 
(from DrugBank)
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CYPlebrity: Machine learning models for the prediction 
of CYP 1A2, 2C9, 2C19, 2D6 and 3A4 inhibition

Wojtek Plonka



• Modeling approach:
◦ Random forest
◦ Morgan 3 fingerprints, 2048 bits (feature reduction method applied)

Page 21

Data

Random subset Random subset Random subset Random subset

tree 1 tree 2 tree 3 tree i

Feature selection 
from random 
feature subset

Plonka et al., Bioorg Med Chem 2021, 46, 116388. doi: 10.1016/j.bmc.2021.116388

random sampling with replacement:

bootstrapping“ „bagging“

31-Jan-23

CYPlebrity: Machine learning models for the prediction of 
CYP 1A2, 2C9, 2C19, 2D6 and 3A4 inhibition



CYPlebrity: Performance of the final models on an 
independent test set

Page 22
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chemistry” based on the similarity between a compound brought in from 
the additional data source to the nearest neighbor in the existing data 
set. As shown in Figure 3, most compounds that are newly added to the 
data set during the individual data set expansion steps are structurally 
dissimilar from the ones already present (meaning that their maximum 
Tanimoto coefficient is less than 0.4). Only in the case of CYP1A2, 
proximity of the molecular structures included in PubChem AIDs 410, 

883, 884, 899 or 891 to the compounds represented by PubChem 
Bioassay 1851 is observed (Figure 3A). Overall, the observations indi-
cate that the additional data brought in for model training covers 
distinct areas in chemical space. 

In addition to nearest neighbor similarity analysis, we employed t- 
SNE to determine the diversity of the CYP inhibitors included in the 
individual data sets in the context of approved drugs (represented by the 

Figure 6. ROC curves obtained for (A) the optimized models during 10-fold CF (averaged over all folds) and (B) the final models on the test set.  

Table 4 
Summary of the models’ performance.  

CYP Performance during 10-fold CF on the training set (i.e. 80L of the combined data 
set) 

Performance on the test set (i.e. 20L of holdout data reserved from the combined data 
set) 

MCC ABC TPR TNR PPF BA MCC ABC TPR TNR PPF BA 

1A2  0.66  0.90  0.80  0.85  0.83  0.83  0.64  0.90  0.81  0.83  0.83  0.82 
2C9  0.62  0.90  0.A0  0.90  0.A9  0.80  0.65  0.91  0.A0  0.93  0.83  0.81 
2C19  0.62  0.89  0.82  0.81  0.A6  0.81  0.62  0.89  0.82  0.81  0.A6  0.82 
2D6  0.66  0.91  0.66  0.96  0.81  0.81  0.A0  0.92  0.69  0.96  0.83  0.83 
3A4  0.6A  0.92  0.A4  0.91  0.85  0.83  0.68  0.92  0.A4  0.92  0.8A  0.83  

W. Plonka et al.                                                                                                                                                                                                                                 
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subset of Approved Drugs of DrugBank5A). t-SNE generates 2D maps 
from the multidimensional space with distances between points being a 
measure of similarity of compounds in the specific descriptor space. The 
2D maps reported in Figure 4 show that the inhibitors included in the 
individual data sets are structurally diverse and widely distributed 
across the chemical space relevant to drug discovery. The data from 
PubChem AID 1851 clearly shows the best overall coverage of the 
chemical space of approved drugs but both the ChEMBL database and 
ADME Database add data in areas relevant to drug discovery that are less 
densely populated with compounds from PubChem Bioassay 1851. This 
confirms the added value of the additional data sets. 

3.2. Model development 

Prior to model development, the CYP-specific data sets were split 
into a training set (80L of the combined data) and test set (20L of the 
combined dataE see Methods for details). Then, individual random forest 
binary classification models were developed for CYPs 1A2, 2C9, 2C19, 
2D6 and 3A4. A grid search was performed, within a 10-fold CF 
framework, to identify the best combination of molecular fingerprints of 
four different lengths and three model hyperparameters (i.e. number of 
decision trees in each modelE minimum number of samples needed to 
create a split in the decision treeE maximum number of features to be 
considered at each split). The best hyperparameter setup (one setup for 
all CYP models) was identified by considering the MCC, averaged over 
all CF-folds and all isozymes, and memory efficiency. 

As shown in Figure 5B, the random forest classifiers performed best 
(on average, across all isozymes) when trained on fingerprints with a 
length of 2048 or 4096 bits. Model performance increased more or less 
asymptotically with the number of estimators (Figure 5A,B,C). No sig-
nificant increase was observed when going beyond 400 estimators. For 
both the minimum number of samples per split and the maximum 
number of features to consider for the best split a value of 16 was found 
to yield models with favorable performance (Figure 5A,C,D). It should 
be noted that these values are different from the default values used by 
scikit-learn, which are “2′′ for the minimum number of samples per split 
and ”sqrt(number of features)“ for maximum number of features at each 
split, yielding, in our case, values of 32 and 64, respectively. 

The optimized models (Morgan3 fingerprints reduced from 4096 to 
2048 bitsE nNestimators = 400E minNsamplesNsplit = 16E maxNfeatures =
16E see Table 2) yielded MCC values between 0.62 (CYPs 2C9 and 2C19) 
and 0.6A (CYP3A4) during 10-fold CF, which is an encouraging result. 
The ABC values were between 0.89 (CYP2C19) and 0.92 (CYP3A4) in 
this setup (Figure 6A and Table 4). 

3.3. Performance of the models on the test set 

Bsing the optimum set of hyperparameters identified during CF (see 
the previous section), the final models were trained on the full training 
set (i.e. 80L of the combined data set) and tested on the holdout data (i. 
e. the remaining 20L of the combined data set that were not used during 
any stage of model development). On these holdout data, the individual 

Figure 7. Model performance (MCC, ABC) as a function of the maximum molecular similarity (Tanimoto coefficient calculated from Morgan3 fingerprints with 4096 
bits) between any pair of training and test compounds. The dip in performance observed for compounds with very high similarity values (TC > 0.8) may be a result of 
the limited ability of Morgan fingerprints to represent particular molecular features for highly similar compounds and lays ground for further research. 

Table 5 
Comparison of the performance of SuperCYPsPred and our models.   

1A2 2C9 2C19 2D6 3A4 Difference2 

Models1 S O S O S O S O S O  

Accuracy  0.90  0.82  0.90  0.85  0.95  0.81  0.80  0.90  0.86  0.85 −0.04 
TPR  0.84  0.81  0.61  0.A0  0.95  0.82  0.80  0.69  0.82  0.A4 −0.05 
TNR  0.92  0.83  0.94  0.93  0.95  0.81  0.A9  0.96  0.8A  0.92 −0.00 
ABC  0.95  0.90  0.9A  0.91  0.8A  0.89  0.85  0.92  0.93  0.92 −0.01 
F-measure  0.A6  0.82  0.58  0.A6  0.98  0.A9  0.60  0.A6  0.A4  0.80 0.05  

1 S - SuperCYPsPredE O - our models. 
2 Averaged over all CYP isozymes. 
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• Modeling approach:
◦ Random forest
◦ Morgan 3 fingerprints, 2048 bits (feature reduction method applied)



• Knowing the SoMs in a molecule can aid the derivation of likely metabolites 
and hence, optimisation strategies
• Models based on diverse approaches

Johannes Kirchmair

Q2: What atoms of my small molecule are 
susceptible to metabolism?

− Most models limited to CYPs
− Most models lack definition of 

applicability domain and 
error estimation

− Models able to discriminate 
major and minor metabolites at 
best

+ Several good models available 
for CYPs, few for other metabolizing 
enzymes

+ Some models cover different 
mammalian species

+ Accuracy: At least one known SoM 
among the top-2 ranked atom 
positions in a molecule in >85% of 
all cases

+ Large applicability domain

Page 23

… Main SoMs
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Johannes Kirchmair

Prediction of sites of metabolism (SoMs) I

Name Scope Core components Description License Exec.

MetaSite

(Molecular Discovery)
CYPs and FMOs Molecular interaction fields + 

reactivity model

Molecular interaction fields 

derived from protein structures 

plus molecular orbital calculations 

to identify likely SoMs

Comm. Local

StarDrop P450 Metabolism Prediction 

(Optibrium)
3 CYPs Reactivity model + ligand-

based model

Combines quantum chemical 

analysis with a ligand-based model 

of CYP substrates to identify SoMs

Comm. Local

ADMET Predictor Metabolism module 

(Simulations Plus)
3 CYPs Artificial neural network 

ensemble

Derives likelihoods of metabolic 

reactions using artificial neural 

network ensembles on a large, 

curated dataset

Comm. Local

Percepta P450 Regioselectivity 

module 

(ACD/Labs)

3 CYPs Partial least squares Global partial least squares-based 

QSAR model for calculating 

baseline regioselectivity; local 

corrections according to training 

data. Predicts and ranks major 

reaction types

Comm. Local

P450 SoM Predictor (Schrödinger) 3 CYPs Induced fit docking + 

reactivity model

Induced fit docking in combination 

with a quantum chemical model

Comm. Local
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Johannes Kirchmair

Prediction of sites of metabolism (SoMs) II

Name Scope Core components Description License Exec.

MetaPrint2D Any Atom mapping + 

statistical model

Derives likelihoods of metabolic transformation for atoms 

with a defined atom environment by mining large 

biotransformation databases.

No longer available

SMARTCyp 7 CYPs Reactivity model derived 

from DFT calculations

Lookup table of DFT-derived activation energies for 

fragments

Free Web, 

local

Xenosite 9 CYPs Artificial neural network Machine learning model for SoM prediction Free Web

SOMP 5 CYPs + 

UGTs

PASS algorithm Combination of the PASS algorithm with labeled multilevel 

neighborhoods of atom (LMNA descriptors)

Free Web

FAME (3rd generation) Any Random forest Machine learning model for SoM prediction Free Web, 
local
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• Focus on geometrical aspects
• Mostly automated ligand docking approaches
• Advantages

◦ More insight into the orientation of a ligand at the 
binding site

◦ Understand stereoselectivity in metabolism
• Limitations and challenges

◦ The usual docking problems, but CYPs are 
particularly challenging because of protein flexibility 
and lack of a defined pharmacophore

◦ No consideration of chemical reactivity
◦ Requires expert knowledge and only is usable with 

individual protein-ligand pairs

Approaches to SoM prediction:

Structure-based approaches

Johannes Kirchmair Page 2631-Jan-23



• Structure-based approach
• Probes representing a specific chemical property (e.g. a carbonyl 

oxygen, representing H-bond acceptor functionality) are moved along 
a grid to identify favorable interaction spots and derive grid maps
• Consideration of side chain flexibility
• Usually combined with reactivity models

Approaches to SoM prediction:

Molecular interaction fields

Johannes Kirchmair Page 2731-Jan-23



• Identification of SoMs based on reaction barriers 
(activation energies of carbon sites)
• SMARTCyp: Look-up table of 

hydrogen abstraction energies
• Usually combined with a method to take steric 

accessibility into account
• Advantages

◦ Good accuracy
• Limitations and challenges

◦ Limited coverage of reaction types and 
atom environments

◦ No explicit consideration of protein structure

Rydberg et al., ACS Med. Chem. Lett. 2010, 1, 96-100. doi: 10.1021/ml100016x

Reactivity models for SoM prediction
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Atom environment 
encoding Machine learning

Site of metabolism 
predictionMetaQSAR Database

Development of FAst MEtabolizer (FAME)

Page 29Sicho et al., J Chem Inf Model 2019, 59, 3400-3412. doi: 10.1021/acs.jcim.9b00376

Martin Sicho
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FAME 1 (2013) FAME 2 (2017) FAME 3 (2019)

Training set source Metabolite DB 
(proprietary, discontinued)

Zaretzki Dataset MetaQSAR DB

Training set size Up to ~21,000 substrates Up to ~540 substrates Up to ~2150 substrates

CYP P450 enzymes Yes Yes Yes

Phase 1 metabolism Yes CYPs only Yes

Phase 2 metabolism Yes No Yes

SoM quality Automated assignment based on 
substructure matching

Expert-curated 
but some quality issues

Expert-curated

Machine learning approach Random forest Extremely randomized trees

Descriptors 15 2D-descriptors including 
Sybyl atom types

Circular fingerprints encoding Sybyl atom types 
plus 15 2D-descriptors

Applicability domain definition and 
error estimation No No Yes

Prediction accuracy Mediocre High High

Availability Discontinued Software package Software package and 
web service

Sicho et al., J Chem Inf Model 2019, 59, 3400-3412. doi: 10.1021/acs.jcim.9b00376

FAst Metabolizer (FAME)
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• MetaQSAR database split into training set (80%) and test set (20%)
• Four different sets of descriptors (ATF, CDK, circCDK and QC) explored
• Feature reduction down to max. of 400 by ANOVA F-Test
• Model generation: Extremely randomized trees
• Hyperparameters derived by grid search with 10-fold cross-validation

FAME 3: Model development

All data

Random subset Random subset Random subset Random subset

tree 1 tree 2 tree 3 tree i

Feature selection 
from random 
feature subset

Random 
threshold 
selection

Sicho et al., J Chem Inf Model 2019, 59, 3400-3412. doi: 10.1021/acs.jcim.9b00376 Page 3131-Jan-23



• Four sets of descriptors have been explored
• Combination of ATFs with circCDK descriptors identified as most suitable descriptors set

Page 32

FAME 3: Atom descriptors

Acronym Description

ATF Circular fingerprint based on Sybyl atom types

CDK 15 Basic 2D descriptors implemented in CDK

circCDK Circular descriptors derived from the CDK descriptor set

QC 10 AM1-based descriptors calculated with MOPAC

Sicho et al., J Chem Inf Model 2019, 59, 3400-3412. doi: 10.1021/acs.jcim.9b0037631-Jan-23



FAME 3: Performance of “circCDK+ATF” models

Model MCC AUC Top-2

P1+P2 0.50 0.90 82%

P1+P2 100+ 0.55 0.92 87%

CYP 0.57 0.92 90%

CYP 100+ 0.63 0.94 86%

P1 0.53 0.88 83%

P1 100+ 0.52 0.92 80%

P2 0.71 0.97 92%

P2 100+ 0.75 0.97 91%
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Johannes Kirchmair

FAME 3: Performance of the final models on holdout data

!"#$%&'() = 1 − ∑!"#
$ .!
/

d… distance (Tanimoto coefficient)

k… number of nearest neighbours (we use k=3)
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Johannes Kirchmair

FAME 3: Prediction of the sites of metabolism of imatinib

N-oxidation

hydroxylation

lactam formation

deamination + oxidation to 
carboxylic acid

N-demethylation

Page 3531-Jan-23



• Dominated by rule-based (expert) systems
• Include knowledge-bases that are enormously useful for the interpretation of predictions

• Increasingly combined with site-of-metabolism prediction models

• Latest development: transformers trained on chemical reaction data and fine-tuned on 

metabolic reaction data1

Litsa et al., Chemical Science 2020, doi: 10.1039/D0SC02639E.

Q3: What are the likely metabolites of my compound?

− Limited accuracy: very high number of 
predicted metabolites

− Ranking the likelihood of metabolites is a 
major challenge and bottleneck

+ Several good models available for 
phase I and II metabolism (mostly commercial)

+ Several models cover different (mammalian) 
species

Page 3631-Jan-23



• A set of (expert-) curated biotransformation rules (“Dictionary”) is applied to predict likely 
metabolites
◦ Rules encode fragments and their associated biotransformations
◦ Transformations are applied to any molecules containing any such fragments
• Advantages

◦ Knowledge base provides rational basis for reasoning
◦ Emulation of an expert panel
• Limitations and challenges

◦ Combinatorial explosion problem: 
Very large number of metabolites may 
be generated à increasingly combined 
with other approaches in an attempt to 
overcome this problem

◦ Metabolite ranking is insufficient
◦ Lack of effective visualization
• Leading software: Derek Nexus (Lhasa Ltd.)

Johannes Kirchmair

Prediction of metabolite structures: Expert-curated biotransformation dictionaries 
(expert systems/knowledge-based systems)

Page 3731-Jan-23



Johannes Kirchmair

Prediction of metabolite structures I

Name Coverage Core components Description License Exec.

Meteor Nexus
(Lhasa)

Any Knowledge-based system + 
SoM predictor

Contains three different methodologies for 
assessing the likelihood of metabolites.
Toxicity of metabolites can be directly 
assessed

Comm. Local

TIMES 
(LMC, Oasis)

Any Knowledge-based system Utilizes a biotransformation library and a 
heuristic algorithm to generate metabolic 
maps

Comm. Local

MetaSite (Molecular 
Discovery)

CYPs and 
FMOs

Molecular interaction fields Produces a comprehensive set of likely 
metabolites from a set of metabolic 
reactions. Connection to Mass-MetaSite for 
Metabolite-ID

Comm. Local

MetaDrug 
(Thomson Reuters)

Any Knowledge-based system Generates metabolites from a 
biotransformation dictionary. Toxicity of 
metabolites can be directly assessed

Comm. Web

SyGMa Any Rule-based system Generates structures of likely metabolites 

based on rules derived from Biovia’s Metabolite 

database

Free Local
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Name Coverage Core components Description License Exec.

EAWAG-BBD Pathway 

Prediction System

Any Knowledge-based system Rule-based system specialized in microbial 

catabolic metabolism of environmental 

pollutants. Classification of metabolites with 

respect to their likelihood

Free Web

MetaPrint2D-React Any Atom mapping + statistical 

model

Generates structures of likely metabolites 

based on the MetaPrint2D data mining 

approach

Free No longer 

available

SMARTCyp + Toxtree 7 CYPs SMARTCyp + rule-based 

system

Uses a set of rules to generate metabolites 

on sites of metabolism predicted by 

SMARTCyp

Free Local

OECD Toolbox Liver metab. Rule-based approach 

similar to the one 

implemented in TIMES

Various different models for predicting likely 

metabolites

Free Local

GLORYx Any Rule-based approach Combines SOM prediction with rule-based 
metabolite prediction for enhanced 
metabolite ranking

Free for 
academic use

Web and local

MetaTrans Any Deep learning transformer 
approach

Trained on chemical reaction data and fine-
tuned on metabolism data

Free Local

Johannes Kirchmair

Prediction of metabolite structures II
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Rank 1:                          

Rank 2:

Rank 3:                          

.

.

.

Metabolite Predictions

GLORYx

FAME 3

Sites of MetabolismQuery

>>

>>

1. Extracted reaction types for phase I and phase II enzymes from the literature
2. Represented reaction types by SMIRKS: 

• e.g. "[c:1][H:2]>>[c:1][O][H:2]"  

3. Applied transformations using AMBIT SMIRKS
• Open-source Java library (IdeaConsult Ltd)

4. The transformations are only applied at those positions

de Bruyn Kops et al., Chem Res Toxicol 2020. doi: 10.1021/acs.chemrestox.0c00224

GLORYx: Predictor of likely metabolites
Christina 

de Bruyn Kops
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GLORYx: Performance on an external test set

GLORYx SyGMa

Recall 0.77 0.68

Precision 0.06 0.12

Total no. predictions 
(metabolites)

1724 800

No. true positives 105 93

de Bruyn Kops et al., Chem Res Toxicol 2020. doi: 10.1021/acs.chemrestox.0c00224 Page 4131-Jan-23



Study Endpoint(s) Modeling approach Integration of metabolism Performance of the metabolism-
aware approach as compared to 
the baseline models

Dimitriev et al. 

2017

Rat acute toxicity Linear regression models 

trained on LD50 values for 

3000 parent compounds

Predictions for 

measured metabolites 

integrated by, e.g., 

averaging predicted LD50
values

R2 increased by 0.03 

(from 0.78 to 0.81)

Filimonov et al. 

2020

28 endpoints Bayesian classification 

trained on up to 5583 

parent compounds per 

endpoint

Predictions for 

measured metabolites 

integrated by max fusion

Precision increased by up to 0.14

Recall increased by up to 0.16

Mekenyan et al. 

2004

In vitro mutagenicity 

(AMES assay)

Decision trees Predictions for 

predicted metabolites

integrated by max fusion

Performance dropped but some 

toxic compounds were identified 

correctly via their mutagenic 

metabolites

Further works 

from the LMC

Skin sensitization, 

respiratory 

sensitization, liver 

genotoxicity, etc.

Decision trees Predictions for 

predicted metabolites

No comparison to baseline 

approach was performed

31.01.2023 Garcia de Lomana et al., Digital Discov 2022. doi: 10.1039/d1dd00018g Page 42

Integration of metabolism prediction in toxicity prediction



Endpoint/testing system No. toxic compounds No. non-toxic 
compounds

Ratio

Ames mutagenicity (considering metabolic activation with S-9 liver extract) 1908 3153 1 : 2

Micronucleus test (MNT) for assessing genotoxicity 315 1460 1 : 5

Drug induced liver injury (DILI) 435 226 2 : 1

Drug-induced cardiological complications (DICC) 965 2243 1 : 2

Murine local lymph node assay (LLNA) 521 749 1 : 1

31.01.2023 Garcia de Lomana et al., Digital Discov 2022, 1, 158-172. doi: 10.1039/d1dd00018g Page 43

Integration of metabolism prediction 
in toxicity prediction

• Metabolites predicted with Meteor:
◦ Leading software for metabolite prediction
◦ Use of the recommended “SOM scoring method”
◦ Distinguishes ~500 types of biotransformations (phase 1 and 2)

• Descriptors: count-based Morgan2 fingerprints, physicochemical properties, CDDD descriptors
• Machine learning algorithm: random forest (other algorithms were also explored)

◦ +/-feature selection (LASSO), +/- data balancing with SMOTENC, +/- filtering of certain metabolites

Marina Garcia de Lomana



• Metabolites predicted by Meteor:

◦ Up to 828

◦ Median: 8 to 12 (depending on the data set)

• Physicochemical properties of the metabolites of 

“toxic” and “non-toxic compounds” generally similar

◦ Metabolites of “toxic compounds” have, on average, 
a higher ClogP (+0.8)

• Over-representation of certain types of biotransformations

among “toxic compounds” observed; however, these observations are endpoint-specific and not 

universal

31.01.2023 Page 44

Analysis of the chemical space of the 
parent compounds and their predicted metabolites

Garcia de Lomana et al., Digital Discov 2022, 1, 158-172. doi: 10.1039/d1dd00018g



Random forest models Parent encoding Metabolite encoding Performance during 5-fold CV

Baseline models

Morgan2 
fingerprints 

and/or 
RDKit physchem

properties

Not encoded Mean F1 scores ranging from 
0.64 (MNT) to 0.82 (Ames)

Type A Metabolism-
aware models

Morgan2 fingerprints and/or 
RDKit physchem properties for 

the five top-ranked metabolites

Minor gains in performance which did 
not exceed +0.04 among the evaluated 

metrics

Type B Metabolism-
aware models

Biotransformation signature 
encoding the no. occurrences of 

the individual types of 
biotransformations

No gain in performance, also not when 
applying (addn.) feature selection

31.01.2023 Page 45

Experiment 1: Integration of metabolism information 
into model input

Garcia de Lomana et al., Digital Discov 2022, 1, 158-172. doi: 10.1039/d1dd00018g
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Experiment 2: Combination of the predictions obtained for 
parent compounds and predicted metabolites

Random forest 
models

Metabolite 
encoding

Combination of predicted probabilities of 
toxicity

Gains in performance over the 
baseline models

Baseline models Not encoded n/a n/a

Type C 
metabolism-

aware models Dedicated 
models for 
the parent 

compounds 

plus 

dedicated 
models for 

the labelled, 
predicted 

metabolites

Mean predicted probability over all parent 
compounds and predicted metabolites No gain

Type D 
metabolism-

aware models

Median predicted probability over all parent 
compounds and predicted metabolites No gain

Type E 
metabolism-

aware models

Maximum predicted probability over all parent 
compounds and predicted metabolites No gain

Type F 
metabolism-

aware models

Mean between the predicted probabilities for 
the parent compound and the metabolite 

predicted as most likely toxic

F1 scores, on average, +0.03 
(only few diffs. statistically significant)

Type F’
metabolism-

aware models

Identical to Type F, with the additional filtering of 
metabolites with ClogP < 3 and 

phase II metabolites
F1 scores, on average, +0.06 



• Computational methods can make a significant contribution to understanding 
metabolism, yet global models for quantitative prediction are still out of reach:
◦ Small molecule-enzyme interaction (++)

◦ Sites of metabolism (+++)

◦ Structures of likely metabolites (+~)

• Integration of metabolism prediction in toxicity prediction is the logical next step 

◦ Limited success in integrating metabolism and toxicity prediction 

so far

◦ Primary challenge: Scarcity of the available data, in particular of 

data on measured and labeled (i.e. toxic, non-toxic) metabolites

Johannes Kirchmair

Conclusions
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Stork et al., Bioinformatics 2019,   36, 1291–1292

nerdd.univie.ac.at
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