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Lniversitat
wien Core research topics:

Machine learning — Bioactivity prediction — ADME/T prediction — natural products

Small-molecule Data Ready-to-screen Compound design & Hit-to-lead &
raw data pre-processing libraries Hit identification lead optimisation
6 N N (7 N 1)
. 4 I
Chemical structure Screening . Free energy
4 R I Virtual
>10%° preparation: libraries . calculation
purchasable ionization, conformer ~ o screening S )
L compounds ) ensemble generation, o o N —> - - — N
p S etc. —> Diversi .|e qr e ~N (Q)SAR
250k natural - / focused libraries De novo modelling
- J . \_ J
products - N design p 2
- ~ Filtering and flagging: Fragment \K j/ o
( h physchem. and libraries * Target prediction
20k fragments properties, bad \\ j/ ~ ~
behaviour in N - ~
\ J k biochemical assays / ADME/Tox
\ / prediction
N -
] . Protein design,
Methods applied in our group homology modelling, Protein
Methods developed and applied in our group molecular dynamics structures

simulations
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S50 Lniversitat Understanding xenobiotic metabolism is
G wien key to the design of safe and efficacious small molecules

* Metabolism is the main clearance pathway of
75 to 90% of all drugs

* Drugs and drug-like compounds have, on
average, metabolites?!

Opportunities

Detoxification

Targeted (de-) activation

e Organismes, tissues, cells

1Testa et al, Drug Discov Today 2012, 17, 549-560. doi: 10.1016/j.drudis.2012.01.017

31-Jan-23 Kirchmair et al., Nat Rev Drug Discov 2015, 14, 387-404. doi: 10.1038/nrd4581

* Only 3% of metabolites are confirmed to
maintain their pharmacological activity*

e At least 7% of metabolites are known to be
reactive and/or toxic!

Challenges and Risks

(De-) activation
Toxification
Changes in distribution

Drug-drug interaction

Drug resistance
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niversitat The metabolic system is highly complex and adaptive
wien

* Diverse and complex families of enzymes

* Varying expression patterns among different species, organs and tissues
Inter-individual factors: genetic differences, polymorphisms
Intra-individual factors: age, pregnancy, disease, stress, diet, etc.
Synergistic collaborations with transporters

Important but weakly understood role of gut microbiota in metabolism
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Kirchmair et al., Nat Rev Drug Discov 2015, 14, 387-404. doi: 10.1038/nrd4581

CYP 2E1
(PDB-ID: 3¢6i)

CYP 2A6
(PDB-ID: 2pg5)

CYP 46A1
(PDB-ID: 299g)

CYP 7A1
(PDB-ID: 3dax)

»
X

CYPs are highly malleable and promiscuous

CYP 3A4
(PDB-ID: 1tgn)

CYP 2C8
(PDB-ID: 1pg2)
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malleability remains challenging for drug design

CYP3A4 structures bound with
metyrapone
erythromycin

Coverage human CYPs with X-ray structures
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27A1
39A1
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31-Jan-23

1A2
2A6
2A13
2B6
2C8
2C9
2C18
2C19
2D6
2E1
2F1
3A4

3A5
3A7

Table based on the work of Guengerich, In Drug Metabolism Prediction, Wiley-VCH 2014.

4A11
4B1
4F12

4F3
4F8
5A1
8A1l

24A1
26A1
26B1
26C1
27B1

251
2U1
2W1
3A43
4A22
4F11
4F22
4Vv2
4x1
471
20A1
27C1
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Thiophene is a safety risk

Tienilic acid
* idiosyncratic toxicity
* hepatotoxicity
* withdrawn after launch

Tenidap

* hepatotoxicity

* immunotoxicity

* development discontinued

Suprofen

* idiosyncratic toxicity

* nephrotoxicity

* withdrawn after launch

Cephaloridine
* nephrotoxicity
* development discontinued

),

R

CYPs ,/ CYPs
54
L ﬁ
S+
R s
R
\O_
Michael acc. GSH/Cys
adduct
o)
R
OH
HN
direct binding to P450 °
s
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S
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= universitat -
Ryl A= As always, there are exceptions...

Tiotropium bromide:
no liver toxicity observed

What makes the difference?

31-Jan-23  Johannes Kirchmair Page 10



7 EWI\éﬁrSItat Drug-Drug Interactions (DDIs)

* Block/induction of a specific metabolic enzyme causes substantial (>10-fold) shift in
pharmacokinetics of another drug

* Particularly problematic if a drug is metabolized via
* asingle enzyme

* polymorphous enzymes
(i.e. enzymes with genetic variants;
e.g. CYP2D6, 2C19, and 2C9)

* Mibefradil

CH
|
N

\TlN

* T-type Ca?* channel blocker for

treatment of hypertension @

* Withdrawn 1997 due drug-drug interactions
with 3A4 substrates such as simvastatin

» ~70% of CYP3A4 activity is lost in the first minute of incubation with mibefradil®

31-Jan-23  1Foti, Drug Metab Dispos 2011, doi:10.1124/dmd.111.038505
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“2 Lniversitat Modern analytical methods and biosystems for metabolism
2 WIEn research are very powerful but resource-demanding

[ animal models }

[ incubations with hepatocytes: }

fresh, cryopreserved or
immortalized cell lines

~

trapping in microsomal

[ specific reactive metabolite
incubations )

>
=
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9
o
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e0]
=
n
(48]
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S
O
=

+ NADPH/UDPGA (cytosolic + microsomal

fractions) )

) ) )
[microsomal incubations} [ liver S9 fraction

incubations with
individual drug-
metabolizing enzymes

31-Jan-23  Kirchmair et al., Nat Rev Drug Discov 2015, 14, 387-404. doi: 10.1038/nrd4581 Page 12
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wien

Absorption and Distribution

/ B Solubility \

B Plasma protein binding

B Tissue permeability
B Transporter interaction

B Concentration at target site
LI

N /

Interaction with metabolic
enzymes

Sites of Metabolism

Metabolite structures

B Pharmacophoric and shape
constraints of the catalytic
site

B Compound reactivity

B Ligand orientation in the
binding site

B (Time-dependent) inhibition
and induction of
metabolizing enzymes

M Reaction rates

Simulation of metabolism requires the consideration of many components but
current in silico models consider only a single one or a few

Physiological relevance
of metabolites

/ B Gain or loss of desired \

activity

B Gain or loss of toxicity

B Effects on the organism
LI

M Microbiome
- Y,

31-Jan-23  Kirchmair et al., Nat Rev Drug Discov 2015, 14, 387-404. doi: 10.1038/nrd4581
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wien

Enzyme
structure,
function,
IS ERINUS

Interaction
of proteins

with small
molecules

Sites of
metabolism

Computational approaches to the
prediction of xenobiotic metabolism

~

G Homology modeling
B Molecular dynamics simulations
B Quantum mechanics
B QM/MM simulations

~

G Knowledge-based systems
B Machine learning models

AN

G Ligand placement methods
B QSAR models
B Machine learning models

B Free-energy calculations

-

G Knowledge-based systems \
B 2D and 3D similarity approaches
B QSAR models

B Pharmacophore models

B Data mining and machine Iearningj

ﬁ Knowledge-based systems \
B Molecular interaction fields
B Reactivity models (QM)

B QSAR models

B Data mining and machine learning
\_® Ligand placement methods -

N
G QM/MM simulations \
B QSAR models

-

Tyzack and Kirchmair, Chem Biol Drug Des 2019, 93, 377-386. doi: 10.1111/cbdd.13445

31-Jan-23

Kirchmair et al., Nat Rev Drug Discov 2015, 14, 387-404. doi: 10.1038/nrd4581

Kirchmair (Ed.), Methods and Principles in Medicinal Chemistry: Drug Metabolism Prediction. Wiley-VCH, 2014

Metabolite
structures

Bioactivity,

toxicity of
metabolites

Biotrans-
formation
rates




Lniversitat
wien

Data on Resources

Available data on xenobiotic metabolism

Challenges and limitations:

Interaction of small Zaretzki dataset 4 N/ N\
molecules with ADMEDB (Fujitsu) Limited
izi indi Limi nti .
metabolizing enzymes BindingDB imited quantity comparability and
ChEMBL and coverage
_ relevance
DrugBank (Univ. Alberta)
MetraBase (Cambridge Univ.) \ AN J
PubChem 4 N/ N\
SUEED (SET) Incomplete, Not stored in a
Metabolites EAWAG-BBD inaccurate, machine-readable
GOSTAR Drug Database (GVK BlO) inconclusive format
HMDB
CEGG \ AN %
MetaBase (MetaDrug)
Metabelite "130k  Biotransformations
METLIN
MetXBioDB 1200 Parent molecules annotated with ~2000 metabolites
Sites of metabolism (SoMs)  Zaretzki dataset L5 ~700 Molecules with annotated SoMs (CYPs only)
MetaQSAR L——> ~2300 Molecules with annotated SoMs (phase | and 1)

Drug-drug interactions DIDB (Drug Interaction Database) ———> ~120  X-ray structures of CYPs

Biomolecular structures of PDB
metabolic enzymes

31-Jan-23

Johannes Kirchmair Page 15



e Lniversitat Q1: What metabolic enzymes is my
Gy wien small-molecule likely to interact with?

* Several good models available for predicting
CYP inhibition and substrate selectivity

* Predictors dominated by machine learning
models y © o

substrate of
inhibitor of

— Many models lack definition of applicability
domain and indicators of prediction confidence
— Applicability domain quite narrow (due to lack of

data for training)

+ Good classification accuracy within
the applicability domain

31-Jan-23  Johannes Kirchmair Page 16



Name Scope Core components Description Licence Exec.

VirtualToxLab * Binder-nonbinder classification for 5 CYPs Docking + QSAR Uses flexible docking in combination witha  Comm. Local

(Biographics Laboratory 3R) multi-dimensional QSAR approach

Percepta P450 Specificity * Substrate-nonsubstrate classification for 5 CYPs PLS Collection of models for predicting CYP Comm. Local

module (ACD/Labs) * Inhibitor-noninhibitor classification for 5 CYPs inhibitors and substrates

ADMEWORKS Predictor * Substrate-nonsubstrate and inhibitor- Multiple linear Collection of QSAR models for the Comm. Local

(Fujitsu) noninhibitor classification for 2 CYPs regression prediction of K; and K, values

ADMET Predictor Metabolism ¢ Substrate-nonsubstrate classification for 9 CYPs Artificial neural network  Predictor based on a large, curated data Comm. Local

module * Inhibitor-noninhibitor classification for 5 CYPs ensemble set. Also predicts K., and V,,,, values for

(Simulations Plus) hydroxylation reactions, and Cl;,, resulting
from the action of 5 CYPs

WhichCYP * Inhibitor-noninhibitor classification for 5 CYPs SVM Trained on the PubChem Bioassay 1851 Free Web
dataset. AUCs between 0.88 and 0.95

SwissADME * Inhibitor-noninhibitor classification for 5 CYPs SVM Trained on the PubChem Bioassay 1851 Free Web
dataset. AUCs between 0.81 and 0.91

CypRules * Inhibitor-noninhibitor classification for 5 CYPs Decision trees Trained on the PubChem Bioassay 1851 Free Web
dataset. Classification accuracies > 90%

CYPlebrity * Inhibitor-noninhibitor classification for 5 CYPs Random forest Trained on PubChem Bioassay, ChREMBL Free Web
and ADMEDB data. Trained on up to
18815 known inhibitors and noninhibitors.
MCCs of up to 0.70.

WhichP450 (optibrium) * Substrate-nonsubstrate classification for 7 CYPs Multi-class random Trained on measured data for 465 Comm. Local

forest model compounds. Average AUC = 0.89 (5-fold CV)

CypReact * Substrate-nonsubstrate classification for 9 CYPs Machine learning Trained on small dataset of approx. 1600 Free Web
compounds

CYPstrate * Substrate-nonsubstrate classification for 9 CYPs Random forest Trained on approx. 1800 confirmed Free Web

substrates and non-substrates.
MCCs up to 0.85




Ligand specificity prediction: Structure-based approaches

* Advantages

o More insight into the orientation of a ligand at the binding site
o Understand stereoselectivity in metabolism

* Disadvantages
o The usual docking problems, but CYPs are particularly challenging
because of protein flexibility and lack of a defined pharmacophore

o Requires expert knowledge and only is usable with individual
protein-ligand pairs

31-Jan-23  Johannes Kirchmair Page 18



» Lniversitat CYPs are highly malleable and promiscuous:
s wien docking approaches face challenges

100 T T T T — 2 ,,/ [
3014 4 = ‘

2F90

HD2
HD4
HD6
Conbined

48 r

Percentage of retrived actives

20

8 : ) \ ) ) | = . 3 - 100 ns full-atom MD simulation
2] 20 48 60 806 180 ’ courtesy of Mark J. Williamson

Percentage of ranked conpounds

31-Jan-23  Martiny et al., Bioinformatics 2015, 31, 3930—-3937. doi: 10.1093/bioinformatics/btv486 Page 19



= niversitat CYPlebrity: Machine learning models for the prediction
’wien of CYP 1A2, 2C9, 2C19, 2D6 and 3A4 inhibition

PubChem 1851 PubChem Others ChEMBL ADME DB

Wojtek Plonka

Approved drugs
(from DrugBank)

CYP1A2 inhibitors
o

CYP Inhibitors Inhibitors exclusively from Noninhibitors
isozyme total ADMEDB total
1A2 7391 693 7868
2C9 5033 741 9784
2C19 6235 534 8094
2D6 3711 708 12694
3A4 7763 1158 11052

31-Jan-23  Plonka et al., Bioorg Med Chem 2021, 46, 116388. doi: 10.1016/j.bmc.2021.116388 Page 20



g7 niversitat CYPlebrity: Machine learning models for the prediction of
-/ wien CYP 1A2, 2C9, 2C19, 2D6 and 3A4 inhibition

* Modeling approach:
o Random forest
o Morgan 3 fingerprints, 2048 bits (feature reduction method applied)

random sampling with replacement:
bootstrapping” ,bagging”

Random subset Random subset Random subset Random subset

Feature selection
from random
feature subset

tree 1 tree 2 tree 3 tree i

31-Jan-23  Plonka et al., Bioorg Med Chem 2021, 46, 116388. doi: 10.1016/j.bmc.2021.116388 Page 21



True Positive Rate

* Modeling approach:

o Random forest
o Morgan 3 fingerprints, 2048 bits (feature reduction method applied)

independent test set

1.0

1.0

0.8 A

0.6 -

0.4 -
— 1A2 (AUC = 0.90, MCC = 0.64)
— 2C9 (AUC = 0.91, MCC = 0.65)

0.2 —— 2C19 (AUC = 0.89, MCC = 0.62)
— 2D6 (AUC = 0.92, MCC = 0.70)
— 3A4 (AUC = 0.92, MCC = 0.68)

0.0 1 1 1 I 1

0.0 0.2 0.4 0.6 0.8
False Positive Rate
31-Jan-23  Plonka et al., Bioorg Med Chem 2021, 46, 116388. doi: 10.1016/j.bmc.2021.116388

.. AUC - MCC

10
______________________ Jrittiniieg i
.......... re "m""""'i‘-‘-‘-‘-’-‘-’-‘-‘-‘-’i..._.___._.
I — L I
0.8 - ‘::"":::::5'5'11'4?"‘47111
=
0.6 -
0.4
— 1A2
— 2C9
024 — 2c19
— 2D6
— 3A4
0.0 I 1 1 1 ] 1 1
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2
Tanimoto Coefficient
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iversitat Q2: What atoms of my small molecule are
Ien susceptible to metabolism?

* Knowing the SoMs in a molecule can aid the derivation of likely metabolites
and hence, optimisation strategies

* Models based on diverse approaches

+ Several good models available — Most models limited to CYPs
for CYPs, few for other metabolizing — Most models lack definition of
enzymes applicability domain and

+ Some models cover different error estimation
mammalian species — Models able to discriminate

+ Accuracy: At least one known SoM major and minor metabolites at
among the top-2 ranked atom best
positions in a molecule in >85% of
all cases

+ Large applicability domain
O Main SoMs

31-Jan-23  Johannes Kirchmair Page 23
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en

Prediction of sites of metabolism (SoMs) |

Name Scope Core components Description License Exec.

MetaSite CYPs and FMOs Molecular interaction fields + Molecular interaction fields Comm. Local
(Molecular Discovery) reactivity model derived from protein structures

plus molecular orbital calculations

to identify likely SoMs
StarDrop P450 Metabolism Prediction 3 CYPs Reactivity model + ligand- Combines quantum chemical Comm. Local
(Optibrium) based model analysis with a ligand-based model

of CYP substrates to identify SoMs
ADMET Predictor Metabolism module 3 CYPs Artificial neural network Derives likelihoods of metabolic Comm. Local
(Simulations Plus) ensemble reactions using artificial neural

network ensembles on a large,

curated dataset
Percepta P450 Regioselectivity 3 CYPs Partial least squares Global partial least squares-based = Comm. Local
module QSAR model for calculating
(ACD/Labs) baseline regioselectivity; local

corrections according to training

data. Predicts and ranks major

reaction types
P450 SoM Predictor (Schrédinger) 3 CYPs Induced fit docking + Induced fit docking in combination  Comm. Local

reactivity model

with a quantum chemical model

31-Jan-23  Johannes Kirchmair
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Lvr\}i\e/ﬁrSitét Prediction of sites of metabolism (SoMs) Il

Name Scope Core components Description License Exec.
MetaPrint2b Any Atermmapping—+ Berivestikelihoods-ef-metabelic-transfermationforatems No longer available
ictical ol b o defined . I i |
SMARTCyp 7 CYPs Reactivity model derived  Lookup table of DFT-derived activation energies for Free Web,

from DFT calculations fragments local

Xenosite 9 CYPs Artificial neural network Machine learning model for SoM prediction Free Web

SOMP 5 CYPs + PASS algorithm Combination of the PASS algorithm with labeled multilevel Free Web
UGTs neighborhoods of atom (LMNA descriptors)

FAME (37 generation) Any Random forest Machine learning model for SoM prediction Free Web,

local

31-Jan-23  Johannes Kirchmair Page 25




Approaches to SoM prediction:
Structure-based approaches

* Focus on geometrical aspects

* Mostly automated ligand docking approaches
* Advantages
o More insight into the orientation of a ligand at the
binding site
o Understand stereoselectivity in metabolism
* Limitations and challenges
o The usual docking problems, but CYPs are
particularly challenging because of protein flexibility
and lack of a defined pharmacophore
> No consideration of chemical reactivity
o Requires expert knowledge and only is usable with
individual protein-ligand pairs

31-Jan-23  Johannes Kirchmair Page 26



Approaches to SoM prediction:
Molecular interaction fields

* Structure-based approach

* Probes representing a specific chemical property (e.g. a carbor ,’ P
oxygen, representing H-bond acceptor functionality) are move |
a grid to identify favorable interaction spots and derive grid mc

* Consideration of side chain flexibility
* Usually combined with reactivity models

31-Jan-23  Johannes Kirchmair
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va\}i\e/ﬁrsnét Reactivity models for SoM prediction

* |dentification of SoMs based on reaction barriers Atom Reactivity Library g \
(activation energies of carbon sites) A. Calculate Quantum J"\ SMARTCyp
Chemical Reference Energies N 1. Assign Energies By SMARTS matching

* SMARTCyp: Look-up table of Caots o sl s
hydrogen abstraction energies :

Atom SMARTS Energy

1 [CX3H1)=0)#6]) | 40.2
2 [CX4]N] 39.8
3 [NA3][H1,H2] 54.1

3
HoN \2/1§O

e Usually combined with a method to take steric

. b . | . . t B. Define SMARTS Rules ( 2. Compute Accessibility Descriptor
accessipility into accoun ' A = Maxbonds, / Maxbond
y Group calculations by fragments and calculate average energies ; SRS 1 BN
HoaN QA A, =2/3=0.67
[ J S 1
Advantages i S0 s, [XHTKON] N, a-213-osn
e = =0.
o Good accuracy X0 40.2 kJ/mol il ©
2NN A,=3/3=1.00

* Limitations and challenges

3. Compute Score and Rank Atoms

o Limited coverage of reaction types and 10 p—
atom environments o5 | S, =40.2-8'0.67 = 34.84 Atom 1 - Rank 2
« e . . . _.q__z ) = - 8* = om 2 - Ran
> No explicit consideration of protein structure < il Hlom 2 - Rank
2 0.6 1 S, =54.1-8%1.00 = 46.10 Atom 3 - Rank 3
% \ J
Q 04
g
= 0.2
mean AUC =0.8
0.0

00 02 04 06 08 1.0
31-Jan-23  Rydberg et al., ACS Med. Chem. Lett. 2010, 1, 96-100. doi: 10.1021/mI100016x False positive rate Page 28
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Lniversitat Development of FAst MEtabolizer (FAME)

wien

M UNIVERSITA DEGLI STUDI
UNIL | Université de Lausanne DI MILANO
\/Atom environment Site of metabolism
MetaQSAR Database encoding Machine learning prediction

Sicho et al., ] Chem Inf Model 2019, 59, 3400-3412. doi: 10.1021/acs.jcim.9b00376

] \ '..‘
n“& kﬁ
H \f
n A

1 -

Martin Sicho

Page 29



i\e/ﬁrSitét FAst Metabolizer (FAME)

P FAME 1 (2013) FAME 2 (2017) FAME 3 (2019)
Training set source _ Zaretzki Dataset MetaQSAR DB

Training set size Up to ~21,000 substrates Up to ~540 substrates Up to ~2150 substrates
CYP P450 enzymes Yes Yes Yes
Phase 1 metabolism Yes CYPs only Yes

E -
SoM quality xpert cur.ate.d Expert-curated
but some quality issues

Machine learning approach Random forest Extremely randomized trees

Descriptors 15 2D-descriptors including Circular fingerprints encodmg Sybyl atom types
Sybyl atom types plus 15 2D-descriptors

Applicability domain definition and Yes

error estimation

Prediction accuracy Mediocre High High

k

31-Jan-23  Sicho et al., J Chem Inf Model 2019, 59, 3400-3412. doi: 10.1021/acs.jcim.9b00376 Page 30




MetaQSAR database split into training set (80%) and test set (20%)
Four different sets of descriptors (ATF, CDK, circCDK and QC) explored
Feature reduction down to max. of 400 by ANOVA F-Test

Model generation: Extremely randomized trees

Hyperparameters derived by grid search with 10-fold cross-validation

All data

Random subset

Random subset Random subset

Feature selection Random
from random threshold
feature subset selection

tree 1 tree 2 tree 3

31-Jan-23  Sicho et al., J Chem Inf Model 2019, 59, 3400-3412. doi: 10.1021/acs.jcim.9b00376

FAME 3: Model development

Random subset

treei

Page 31



FAME 3: Atom descriptors

* Four sets of descriptors have been explored
* Combination of ATFs with circCDK descriptors identified as most suitable descriptors set

ATF Circular fingerprint based on Sybyl atom types
CDK 15 Basic 2D descriptors implemented in CDK

circCDK Circular descriptors derived from the CDK descriptor set
(9 /\\/

@ t\\ /)\ = ~

QC 10 AM1-based descriptors calculated with MOPAC

Atom | AtomType_0.3_0|...|AtomType_C.ar_3 | AtomType_N.3_

o 1 2 1 fingerprints
Atom | sigmaEng_0.3_0 | ... |sigmaEng_C.ar_3 | sigmaEng_N.3_

6 9'.;1 8.,'_;,1 8':_;,5 descriptors

31-Jan-23  Sicho et al., J Chem Inf Model 2019, 59, 3400-3412. doi: 10.1021/acs.jcim.9b00376 Page 32



Wl\e/ﬁmtat FAME 3: Performance of “circCDK+ATF” models

2 10 Model = P1+P2 1o Model = CYP 1o Model = P1 1o Model = P2
§ 0.8 — 0.8 — — - 0.8 - 0.8
S s “
(.;) r>00.6 . . 0.6 . 0.6 e 0.6
§ %0'4 0.4 0.4 0.4
O = MCC (avg) e MCC (avg) e MCC (avg) e MCC (avg)
T 02 Top-2 (avg) 0.2 Top-2 (avg) 0.2 Top-2 (avg) 0.2 Top-2 (avg)
O AUC (avg) « AUC (avg) « AUC (avg) « AUC (avg)
OI 0'01234 6 7 8 910 O'01234 6 7 8 9 10 '01234 6 7 8 9 10 0'01234 6 7 8 910
- Bond@ Depth Bond Depth Bond@ Depth Bond Depth
 Model | Mcc_ | AUC__ | Top2
P1+P2 0.50 0.90 82%
g ., P1+P2 100+ 0.55 0.92 87%
I
5 -%_CYP 0.57 0.92 90%
o
S S CYP 100+ 0.63 0.94 86%
£ o
s SP1 0.53 0.88 83%
o) o)
9 P1 100+ 0.52 0.92 80%
P2 0.71 0.97 92%
P2 100+ 0.75 0.97 91%

31-Jan-23  Sicho et al., J Chem Inf Model 2019, 59, 3400-3412. doi: 10.1021/acs.jcim.9b00376 Page 33



Lvr\}i\e/ﬁrsité’[ FAME 3: Performance of the final models on holdout data

P1+P2 model CYP model P1 model P2 model
1.0 1.0 1.0 1.0
0.8 r=0.96 - 0.8 r=0.95 * 0.8 r=0.97 0.8 r=0.83 -
80.6 0-6/ 0.6 . ° 0.6/
=04 . - 04 = . 0.4 0.4
0.2 0.2 0.2 & 0.2
0.0 0.5 0.6 0.7 0.8 0.9 0.0 0.5 0.6 0.7 0.8 0.9 0.0 0.5 0.6 0.7 0.8 0.9 0.0 0.5 0.6 0.7 0.8 0.9
FAMEscore Bin Centerpoint FAMEscore Bin Centerpoint FAMEscore Bin Centerpoint FAMEscore Bin Centerpoint
2500 2500 2500 2500
2000 2000 2000 2000
£1500 1500 1500 1500
81000 1000 1000 1000
500 500 500 500
0 0 0 0
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Wi\éﬁrsnét FAME 3: Prediction of the sites of metabolism of imatinib

Model: P1+P2 (depth: 5)

N-demethylation Molecule mol_1

Atom Probability FAMEscore
lactam formation \ N.2 0.888 0.785
. C.1 0.884 0.809
~(2) C.36 0.684 0.944
deamination + oxidation to 3:& /:1 C.4 0.684 0.944
carboxylic acid \\?/ C.6 0.668 0.808
o LN C.20 0.66 0.826
N-oxidation ol C.37 0.652 0.939
323 N C.3 0.652 0.939
s'@so;z'g\y NN 435\_\16)5 N.33 0.644 0.912
2|65\ 'E2|4 1|9!\ .i1|7 C.13 0.128 0.804
Nos” (20 8”7 N.22 0.044 0.814

hydroxylation N.5 0.044 0.788
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ldvﬁi\éﬁmtat Q3: What are the likely metabolites of my compound?

* Dominated by rule-based (expert) systems
* Include knowledge-bases that are enormously useful for the interpretation of predictions
* Increasingly combined with site-of-metabolism prediction models

* Latest development: transformers trained on chemical reaction data and fine-tuned on
metabolic reaction data'

+ Several good models available for — Limited accuracy: very high number of
phase | and Il metabolism (mostly commercial) predicted metabolites
+ Several models cover different (mammalian) — Ranking the likelihood of metabolites is a

species major challenge and bottleneck

31-Jan-23  Litsa et al., Chemical Science 2020, doi: 10.1039/D0SC02639E. Page 36



(expert systems/knowledge-based systems)

A set of (expert-) curated biotransformation rules (“Dictionary”) is applied to predict likely
metabolites

o Rules encode fragments and their associated biotransformations

o Transformations are applied to any molecules containing any such fragments

* Advantages
o Knowledge base provides rational basis for reasoning
o Emulation of an expert panel

* Limitations and challenges

o Combinatorial explosion problem:
Very large number of metabolites may
be generated - increasingly combined
with other approaches in an attempt to
overcome this problem

o Metabolite ranking is insufficient

o Lack of effective visualization

Formula: C28H29N702

Formula: C24H19N504

. Exact Mass: 435.2383 J 1
) . el M76 || Average Molecular Mass: 49558 Exact Mass: 41,1437 M20
eading software: Derek Nexus (Lhasa Nl |l |
. . Exact Mass: 523.2332 Exact Mass: 495.2383 Formula: C24H21NS03 Exact Mass: 425.1488
Average Molecular Mass: 523.59 Aver Mass: 495. Exact Mass: 427 . 425.

31-Jan-23  Johannes Kirchmair Page 37




universitat
wien

Prediction of metabolite structures |

Name Coverage Core components Description License Exec.
Meteor Nexus Any Knowledge-based system +  Contains three different methodologies for Comm. Local
(Lhasa) SoM predictor assessing the likelihood of metabolites.

Toxicity of metabolites can be directly

assessed
TIMES Any Knowledge-based system Utilizes a biotransformation library and a Comm. Local
(LMC, Oasis) heuristic algorithm to generate metabolic

maps
MetaSite (Molecular CYPs and Molecular interaction fields  Produces a comprehensive set of likely Comm. Local
Discovery) FMOs metabolites from a set of metabolic

reactions. Connection to Mass-MetaSite for

Metabolite-ID
MetaDrug Any Knowledge-based system Generates metabolites from a Comm. Web
(Thomson Reuters) biotransformation dictionary. Toxicity of

metabolites can be directly assessed
SyGMa Any Rule-based system Generates structures of likely metabolites Free Local

based on rules derived from Biovia’s Metabolite
database

31-Jan-23  Johannes Kirchmair
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Prediction of metabolite structures Il

Name Coverage Core components Description License Exec.
EAWAG-BBD Pathway Any Knowledge-based system Rule-based system specialized in microbial Free Web
Prediction System catabolic metabolism of environmental
pollutants. Classification of metabolites with
respect to their likelihood
MetaPrnt2DR Ary : . ticat € E Liteal boli . Nod
appreach
SMARTCyp + Toxtree 7 CYPs SMARTCyp + rule-based Uses a set of rules to generate metabolites Free Local
system on sites of metabolism predicted by
SMARTCyp
OECD Toolbox Liver metab. Rule-based approach Various different models for predicting likely  Free Local
similar to the one metabolites
implemented in TIMES
GLORYx Any Rule-based approach Combines SOM prediction with rule-based Free for Web and local
metabolite prediction for enhanced academic use
metabolite ranking
MetaTrans Any Deep learning transformer Trained on chemical reaction data and fine-  Free Local

approach

tuned on metabolism data

31-Jan-23  Johannes Kirchmair
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Wl\éﬁmtat GLORYXx: Predictor of likely metabolites 9
Christina
P P % N P Metabolite Predictions de Bruy; Kops
H FAME 3 @ Rank 1: .m\)\Q\O\\/@H

HsC H HyC H Rank 2: /@/\( \)\Q\ )3
o 5 Rank 3: Q/\F ,Z%
: ® !

Query Sites of Metabolism : '

1. Extracted reaction types for phase | and phase Il enzymes from the literature

2. Represented reaction types by SMIRKS: i
* e.g."[c:1][H:2]>>[c:1][O][H:2]" ‘_ H D>

3. Applied transformations using AMBIT SMIRKS
e Open-source Java library (IdeaConsult Ltd)

4. The transformations are only applied at those positions

31-Jan-23  de Bruyn Kops et al., Chem Res Toxicol 2020. doi: 10.1021/acs.chemrestox.0c00224 Page 40



¢ iversitat GLORYx: Performance on an external test set

1.0
0.8
GLORYXx SyGMa
§ 0.6
Recall 0.77 0.68 ¢
Precision 0.06 012 ¢,
=
Total no. predictions 1724 800
(metabolites) 0.2
No. true positives 105 93 —— SyGMa, AUC=0.74
GLORYx, AUC =0.79
o0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

31-Jan-23  de Bruyn Kops et al., Chem Res Toxicol 2020. doi: 10.1021/acs.chemrestox.0c00224 Page 41
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Modeling approach

Integration of metabolism

Integration of metabolism prediction in toxicity prediction

Performance of the metabolism-
aware approach as compared to
the baseline models

Dimitriev et al.
2017

Filimonov et al.
2020

Mekenyan et al.
2004

Further works
from the LMC

Rat acute toxicity

28 endpoints

In vitro mutagenicity
(AMES assay)

Skin sensitization,
respiratory
sensitization, liver
genotoxicity, etc.

Linear regression models
trained on LDsg values for
3000 parent compounds

Bayesian classification
trained on up to 5583
parent compounds per
endpoint

Decision trees

Decision trees

31.01.2023 Garcia de Lomana et al., Digital Discov 2022. doi: 10.1039/d1dd00018g

Predictions for
measured metabolites
integrated by, e.g.,
averaging predicted LDs,
values

Predictions for
measured metabolites
integrated by max fusion

Predictions for
predicted metabolites
integrated by max fusion

Predictions for
predicted metabolites

R? increased by 0.03
(from 0.78 to 0.81)

Precision increased by up to 0.14
Recall increased by up to 0.16

Performance dropped but some
toxic compounds were identified
correctly via their mutagenic
metabolites

No comparison to baseline
approach was performed
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We create chemistry

S Lniversitat  Integration of metabolism prediction
Fwien in toxicity prediction |

Marina Garcia de Lomana

Endpoint/testing system No. non-toxic
compounds

No. toxic compounds

Ames mutagenicity (considering metabolic activation with S-9 liver extract) 1908 3153 1:2
Micronucleus test (MNT) for assessing genotoxicity 315 1460 1:5
Drug induced liver injury (DILI) 435 226 2:1
Drug-induced cardiological complications (DICC) 965 2243 1:2
Murine local lymph node assay (LLNA) 521 749 1:1

* Metabolites predicted with Meteor:
o Leading software for metabolite prediction
o Use of the recommended “SOM scoring method”
o Distinguishes ~500 types of biotransformations (phase 1 and 2)

* Descriptors: count-based Morgan2 fingerprints, physicochemical properties, CDDD descriptors

* Machine learning algorithm: random forest (other algorithms were also explored)
o +/-feature selection (LASSO), +/- data balancing with SMOTENC, +/- filtering of certain metabolites

31.01.2023 Garcia de Lomana et al., Digital Discov 2022, 1, 158-172. doi: 10.1039/d1dd00018g Page 43



> Lniversitat Analysis of the chemical space of the

_wien parent compounds and their predicted metabolites

* Metabolites predicted by Meteor: 020l - =
o Up to 828 B
> Median: 8 to 12 (depending on the data set) oo

* Physicochemical properties of the metabolites of ::: . VE——
“toxic” and “non-toxic compounds” generally similar o

- parents
- metabolites

o Metabolites of “toxic compounds” have, on average,

a higher ClogP (+0.8)

* Over-representation of certain types of biotransformations 0.05.

among “toxic compounds” observed; however, these observations %% 5 35 % # =
universal

31.01.2023 Garcia de Lomana et al., Digital Discov 2022, 1, 158-172. doi: 10.1039/d1dd00018g Page 44



Experiment 1: Integration of metabolism information
into model input

Random forest models | Parent encoding Metabolite encoding Performance during 5-fold CV

Baseline models Not encoded
s & Risiabal s .Morgapz Mo.rganz fingerprints ar_1d/or
Jware models fingerprints RDKit physchem properties for
and/or the five top-ranked metabolites
RDKit physchem

Biotransformation signature

Type B Metabolism- encoding the no. occurrences of
aware models the individual types of

biotransformations

properties

31.01.2023 Garcia de Lomana et al., Digital Discov 2022, 1, 158-172. doi: 10.1039/d1dd00018g

Mean F1 scores ranging from
0.64 (MNT) to 0.82 (Ames)

Minor gains in performance which did
not exceed +0.04 among the evaluated
metrics

No gain in performance, also not when
applying (addn.) feature selection
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niversitat  Experiment 2: Combination of the predictions obtained for
> wien parent compounds and predicted metabolites

Random forest Metabolite Combination of predicted probabilities of Gains in performance over the
models encoding toxicity baseline models
Baseline models Not encoded n/a n/a
Type C

Mean predicted probability over all parent

lism- _ _ .
ar\:;traebs“;sdn;ls bedicated compounds and predicted metabolites No gain
edicate

Type D models for . . y
el et e
aware models compounds

Type E . : -
metabolism- plus Maximum predicted probability over all parent No gain

compounds and predicted metabolites
aware models

dedicated
Type F Mean between the predicted probabilities for
yp . models for P P . F1 scores, on average, +0.03
metabolism- the labelled the parent compound and the metabolite _ . o
’ . . . (only few diffs. statistically significant)

aware models predicted predicted as most likely toxic

Type F’ metabolites  |dentical to Type F, with the additional filtering of
metabolism- metabolites with ClogP < 3 and F1 scores, on average, +0.06

aware models phase Il metabolites



Conclusions

* Computational methods can make a significant contribution to understanding
metabolism, yet global models for quantitative prediction are still out of reach:
> Small molecule-enzyme interaction (++)

o Sites of metabolism (+++)
o Structures of likely metabolites (+7)

* Integration of metabolism prediction in toxicity prediction is the logical next step
o Limited success in integrating metabolism and toxicity prediction
so far
° Primary challenge: Scarcity of the available data, in particular of
data on measured and labeled (i.e. toxic, non-toxic) metabolites
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CYPstrate

Prediction of Cytochrome P450
substrates

31-Jan-23

universitat

Cytochrome P450
inhibitors

.CYPW
- -
@
CYP1A2

CYPlebrity

Prediction of Cytochrome P450
inhibitors

Hit Dexter 3

Prediction of frequent hitters

NERDD

New E-Resource for Drug Discovery

Sites of Metabolism

Regioselectivity prediction for
phase 1 and phase 2 metabolism

Natural Product-Likeness

synthetic molecules [ <= ; =P B natural products
N

NP-Scout

Identification and visualization of
natural product-likeness

nerdd.univie.ac.at

Stork et al., Bioinformatics 2019, 36, 1291-1292

Metabolite Structures Metabolite Structures

g

S GNP

Q)Q

GLORY

Metabolite structure prediction
for cytochrome P450 metabolism

Skin Sensitization

skin sensitizer?

No ~ \ Yes

Skin Doctor CP

Prediction of skin sensitization
potential

GLORYx

Metabolite structure prediction

for phase | and Il metabolism
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