

Metabolism prediction

Johannes Kirchmair

Slides available from:

31-Jan-23 Johannes Kirchmair

UNIVERSITAT The Computational Drug Discovery and Design Group (COMP3D), WIEN Christian-Doppler Laboratory for Molecular Informatics in the Biosciences

- - Monika Babicki Malena Brenek **Christina Brenner** Ya "Anya" Chen Ningning Fan Hosein Fooladi Marina Garcia de Lomana Steffen Hirte **Roxane Jacob** Judith Maaß Tian-Yu Niu Vincenzo Palmacci Wojtek Plonka **Vincent-Alexander Scholz** Nicole Schuldhaus
 - Axinya Tokareva Thi Ngoc Lan Vu **Huanni Zhang**

Christian Doppler Forschungsgesellschaft

Federal Ministry Republic of Austria Digital and Economic Affairs

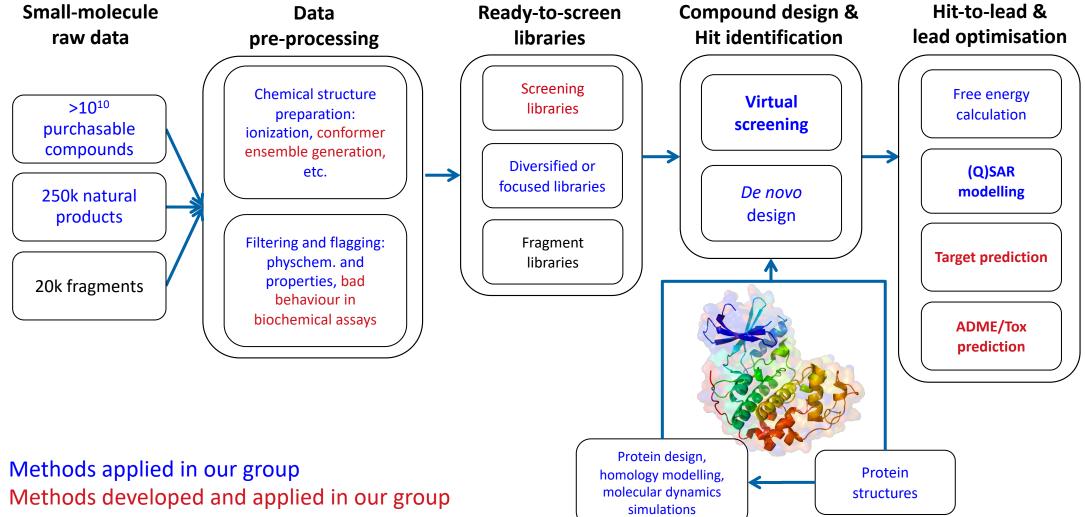
syngenta

D • **BASF** We create chemistry **Beiersdorf**

Boehringer Ingelheim

Core research topics:

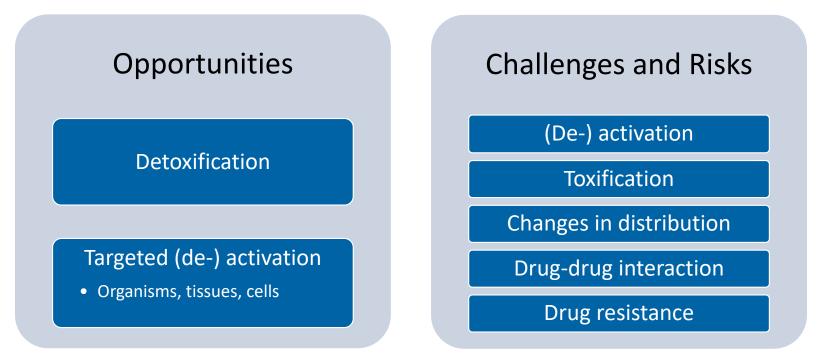
Machine learning – Bioactivity prediction – ADME/T prediction – natural products



Understanding xenobiotic metabolism is key to the design of safe and efficacious small molecules

- Metabolism is the main clearance pathway of 75 to 90% of all drugs
- Drugs and drug-like compounds have, on average, metabolites¹

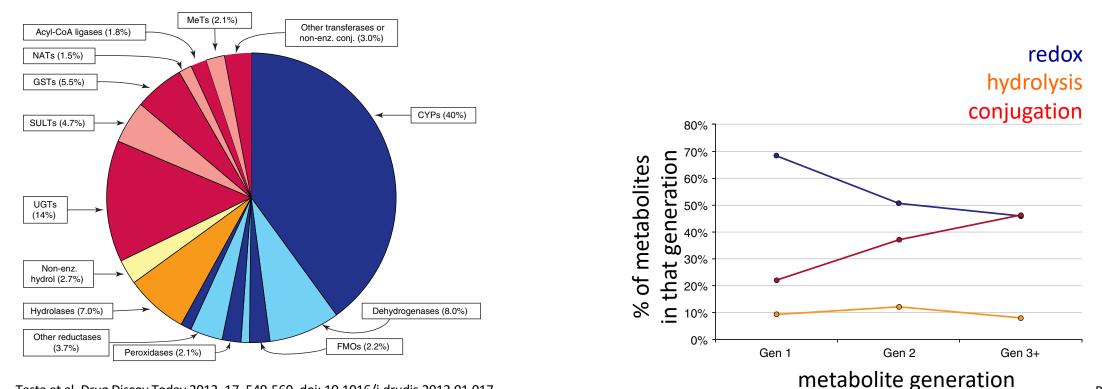
- Only 3% of metabolites are confirmed to maintain their pharmacological activity¹
- At least 7% of metabolites are known to be reactive and/or toxic¹

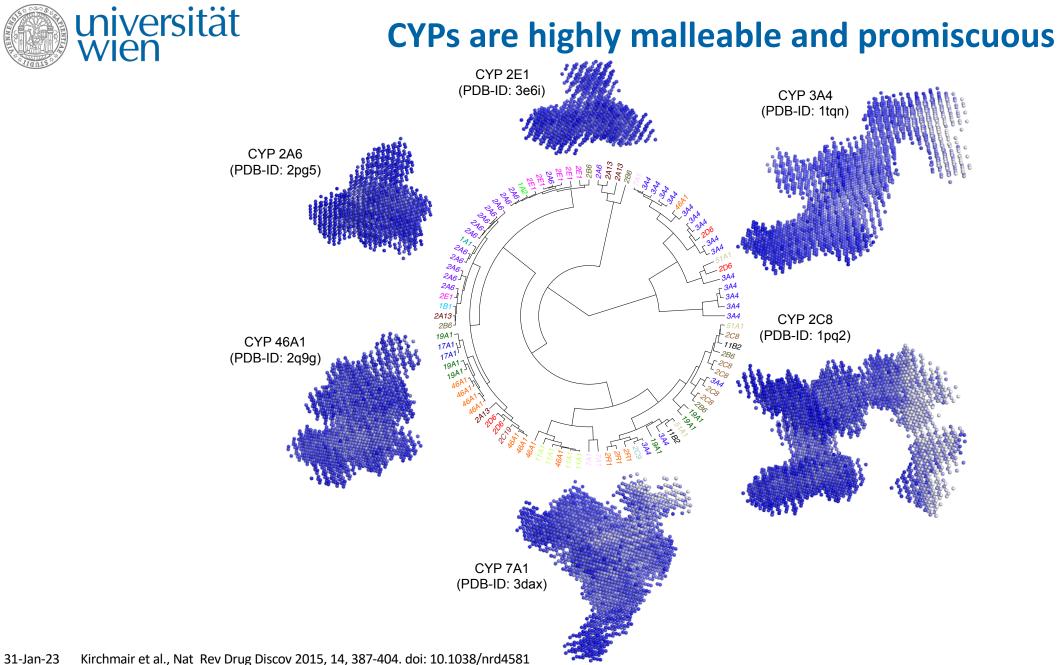


31-Jan-23 ¹Testa et al, Drug Discov Today 2012, 17, 549-560. doi: 10.1016/j.drudis.2012.01.017 Kirchmair et al., Nat Rev Drug Discov 2015, 14, 387-404. doi: 10.1038/nrd4581

The metabolic system is highly complex and adaptive

- Diverse and complex families of enzymes
- Varying expression patterns among different species, organs and tissues
- Inter-individual factors: genetic differences, polymorphisms
- Intra-individual factors: age, pregnancy, disease, stress, diet, etc.
- Synergistic collaborations with transporters
- Important but weakly understood role of gut microbiota in metabolism



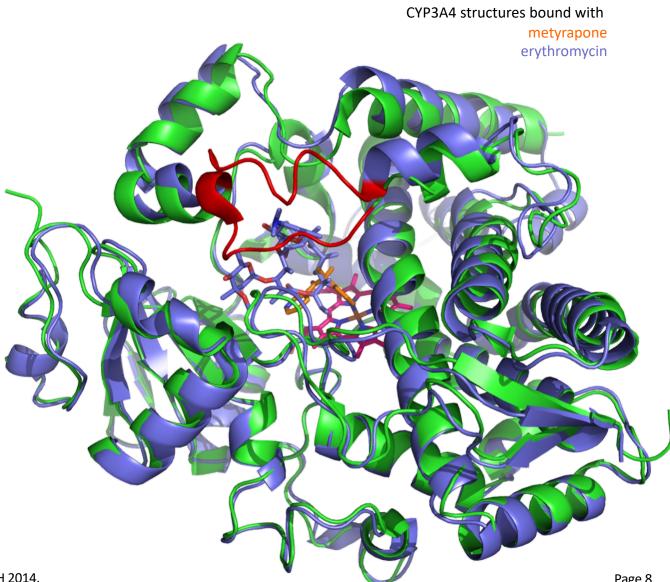


Structural data on CYPs have become available but enzyme universität wien malleability remains challenging for drug design

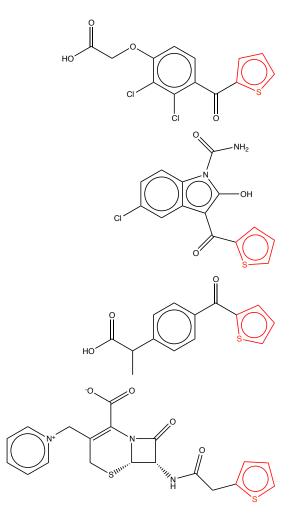
Xenobiotics Fatty acids Eicosanoids Vitamins Unknown Sterols 1B1 1A1 2J2 4F2 2A7 2R1 7A1 1A2 4A11 4F3 24A1 251 7B1 2A6 4B1 4F8 26A1 2U1 4F12 8B1 2A13 5A1 26B1 2W1 8A1 11A1 2B6 26C1 3A43 11B1 2C8 27B1 4A22 11B2 2C9 4F11 17A1 2C18 4F22 2C19 19A1 4V2 2D6 21A2 4X1 27A1 2E1 4Z1 39A1 20A1 2F1 46A1 3A4 27C1 3A5 51A1

Coverage human CYPs with X-ray structures

3A7



Thiophene is a safety risk



Tienilic acid

- idiosyncratic toxicity
- hepatotoxicity
- withdrawn after launch

Tenidap

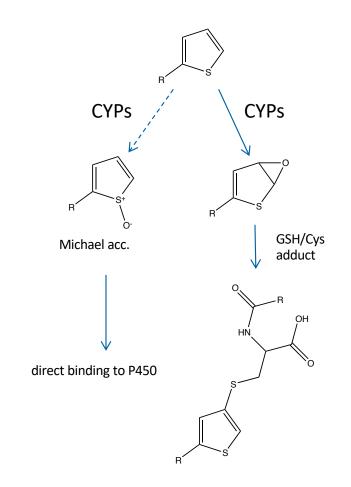
- hepatotoxicity
- immunotoxicity
- development discontinued

Suprofen

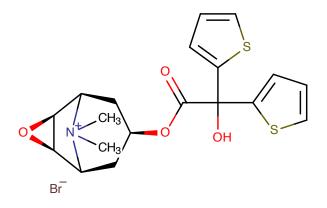
- idiosyncratic toxicity
- nephrotoxicity
- withdrawn after launch

Cephaloridine

- nephrotoxicity
- development discontinued



As always, there are exceptions...



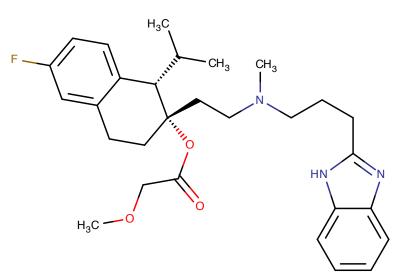
Tiotropium bromide: no liver toxicity observed

What makes the difference?

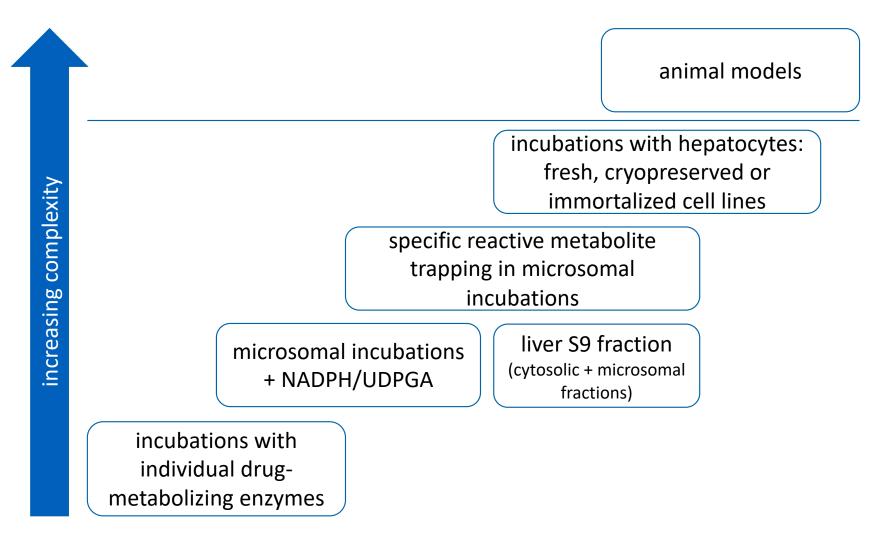
Drug-Drug Interactions (DDIs)

- Block/induction of a specific metabolic enzyme causes substantial (>10-fold) shift in pharmacokinetics of another drug
- Particularly problematic if a drug is metabolized via
 - a single enzyme
 - polymorphous enzymes

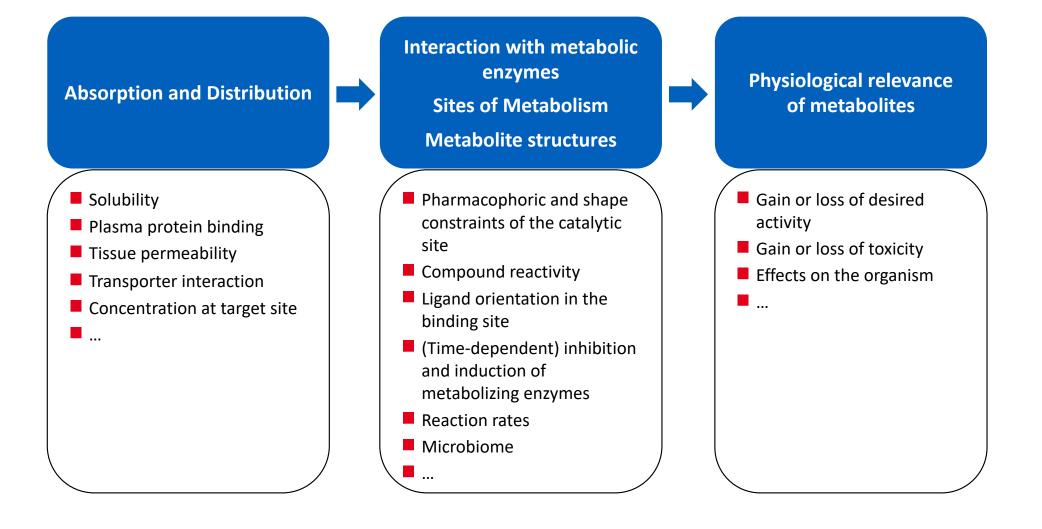
 (i.e. enzymes with genetic variants;
 e.g. CYP2D6, 2C19, and 2C9)
- Mibefradil
 - T-type Ca²⁺ channel blocker for treatment of hypertension
 - Withdrawn 1997 due drug-drug interactions with 3A4 substrates such as simvastatin
 - ~70% of CYP3A4 activity is lost in the first minute of incubation with mibefradil¹



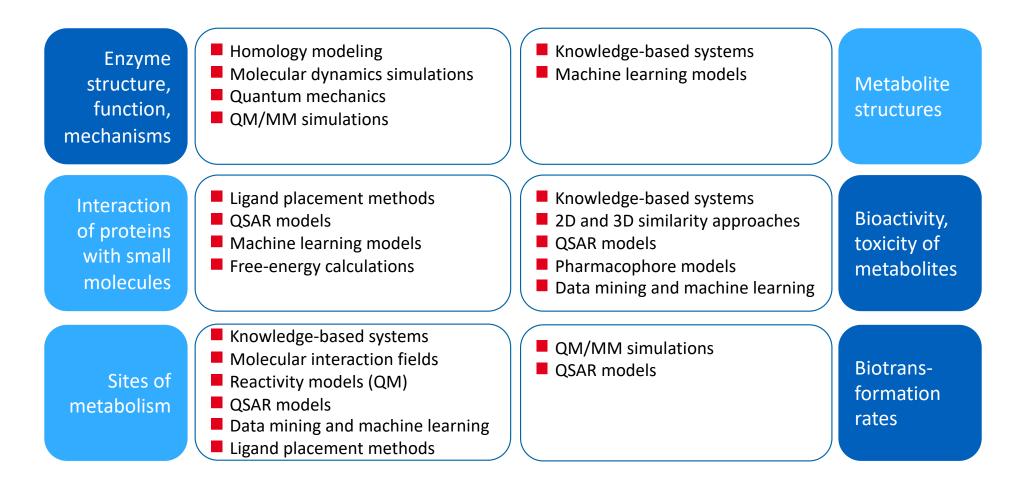
Universität Modern analytical methods and biosystems for metabolism view research are very powerful but resource-demanding



Simulation of metabolism requires the consideration of many components but current *in silico* models consider only a single one or a few



Computational approaches to the prediction of xenobiotic metabolism

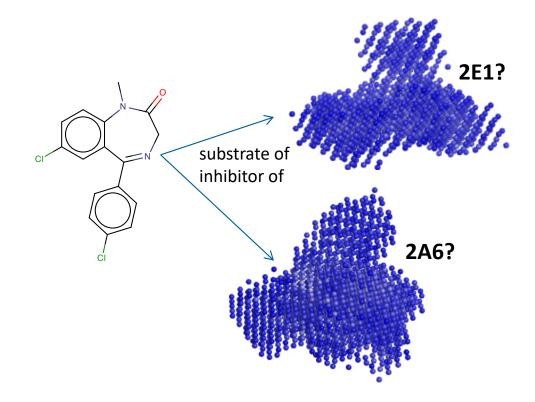


Available data on xenobiotic metabolism

Data on	Resources	Challenges and limitations:
Interaction of small molecules with metabolizing enzymes	Zaretzki dataset ADMEDB (Fujitsu) BindingDB ChEMBL DrugBank (Univ. Alberta) MetraBase (Cambridge Univ.) PubChem SuperCyp (Charité)	Limited quantity and coverage Limited comparability and relevance
Metabolites	EAWAG-BBD GOSTAR Drug Database (GVK BIO) HMDB KEGG MetaBase (MetaDrug) Metabolite METLIN MetXBioDB	Incomplete, inaccurate, inconclusive format ^ ~130k Biotransformations ~ ~1200 Parent molecules annotated with ~2000 metabo
Sites of metabolism (SoMs)	Zaretzki dataset MetaQSAR	\sim ~700 Molecules with annotated SoMs (CYPs only) \sim ~2300 Molecules with annotated SoMs (phase I and II)
Drug-drug interactions	DIDB (Drug Interaction Database) –	
Biomolecular structures of metabolic enzymes	PDB	Johannes Kirchmair Pa

Q1: What metabolic enzymes is my small-molecule likely to interact with?

- Several good models available for predicting CYP inhibition and substrate selectivity
- Predictors dominated by machine learning models



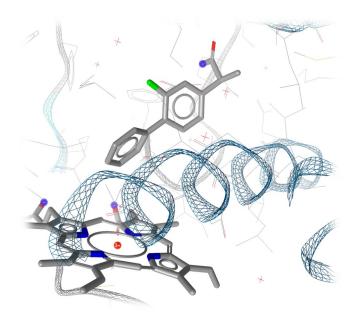
+ Good classification accuracy within the applicability domain

- Many models lack definition of applicability domain and indicators of prediction confidence
- Applicability domain quite narrow (due to lack of data for training)

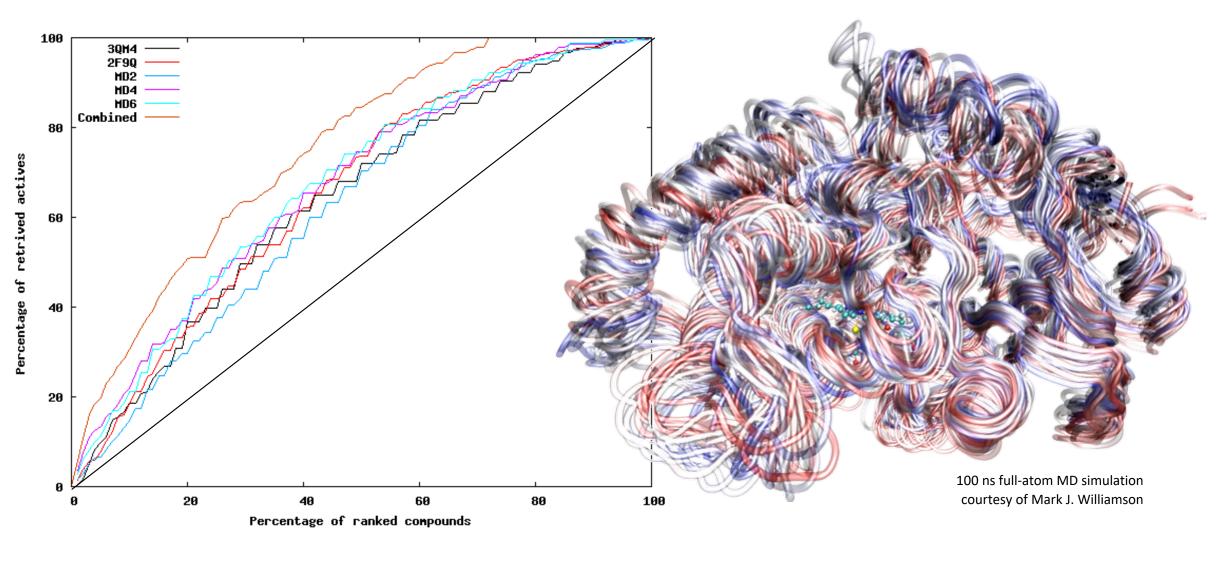
Name	Scope	Core components	Description	Licence	Exec.
VirtualToxLab (Biographics Laboratory 3R)	Binder-nonbinder classification for 5 CYPs	Docking + QSAR	Uses flexible docking in combination with a multi-dimensional QSAR approach	Comm.	Local
Percepta P450 Specificity module (ACD/Labs)	 Substrate-nonsubstrate classification for 5 CYPs Inhibitor-noninhibitor classification for 5 CYPs 	PLS	Collection of models for predicting CYP inhibitors and substrates	Comm.	Local
ADMEWORKS Predictor (Fujitsu)	DRKS Predictor• Substrate-nonsubstrate and inhibitor- noninhibitor classification for 2 CYPsMultiple linear regressionCollection of QSAR models for the prediction of K _i and K _m values		Comm.	Local	
ADMET Predictor Metabolism module (Simulations Plus)	• Inhibitor-noninhibitor classification for 5 CYPs ensemble set. Also predicts K _m and V _{max} values for		Comm.	Local	
WhichCYP	YP Inhibitor-noninhibitor classification for 5 CYPs SVM Trained on the PubChem Bioassay 1851 dataset. AUCs between 0.88 and 0.95		Free	Web	
SwissADME	• Inhibitor-noninhibitor classification for 5 CYPs SVM Trained on the PubChem Bioassay 1851 dataset. AUCs between 0.81 and 0.91		Free	Web	
CypRules	 Inhibitor-noninhibitor classification for 5 CYPs Decision trees Trained on the PubChem Bioassay 1851 dataset. Classification accuracies > 90% 		Free	Web	
CYPlebrity	Inhibitor-noninhibitor classification for 5 CYPs	Random forest	Trained on PubChem Bioassay, ChEMBL and ADMEDB data. Trained on up to 18815 known inhibitors and noninhibitors. MCCs of up to 0.70.	Free	Web
WhichP450 (Optibrium)	 Substrate-nonsubstrate classification for 7 CYPs 	Multi-class random forest model	Trained on measured data for 465 compounds. Average AUC = 0.89 (5-fold CV)	Comm.	Local
CypReact	Substrate-nonsubstrate classification for 9 CYPs	Machine learning	Trained on small dataset of approx. 1600 compounds	Free	Web
CYPstrate	Substrate-nonsubstrate classification for 9 CYPs	Random forest	Trained on approx. 1800 confirmed substrates and non-substrates. MCCs up to 0.85	Free	Web

Ligand specificity prediction: Structure-based approaches

- Advantages
 - More insight into the orientation of a ligand at the binding site
 - Understand stereoselectivity in metabolism
- Disadvantages
 - The usual docking problems, but CYPs are particularly challenging because of protein flexibility and lack of a defined pharmacophore
 - Requires expert knowledge and only is usable with individual protein-ligand pairs



CYPs are highly malleable and promiscuous: docking approaches face challenges



Universität CYPlebrity: Machine learning models for the prediction of CYP 1A2, 2C9, 2C19, 2D6 and 3A4 inhibition

Wojtek Plonka

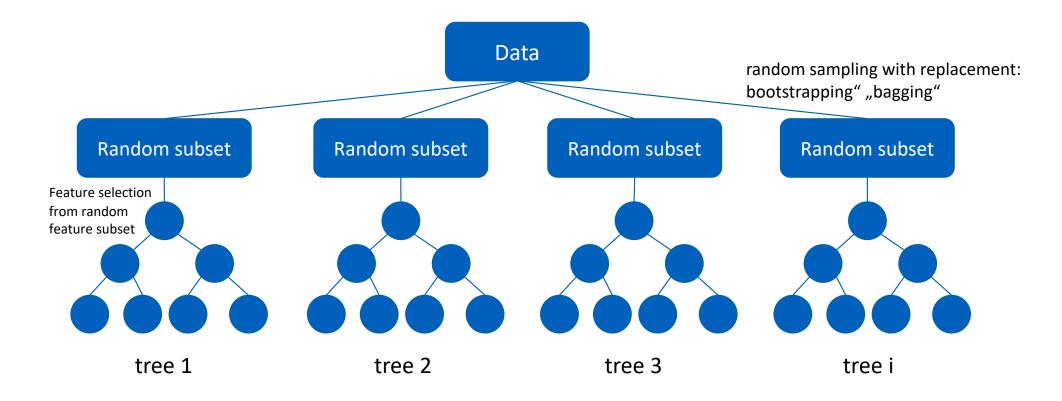
PubChem 1851 PubChem Others ChEMBL ADME DB

Approved drugs (from DrugBank)

CYP isozyme	Inhibitors total	Inhibitors exclusively from ADMEDB	Noninhibitors total
1A2	7391	693	7868
2C9	5033	741	9784
2C19	6235	534	8094
2D6	3711	708	12694
3A4	7763	1158	11052

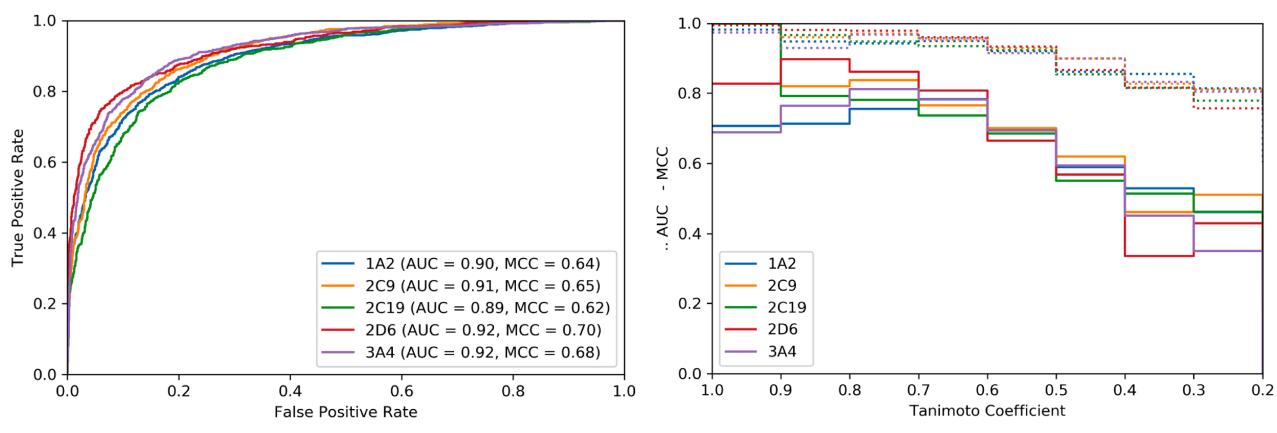
CYPlebrity: Machine learning models for the prediction of CYP 1A2, 2C9, 2C19, 2D6 and 3A4 inhibition

- Modeling approach:
 - Random forest
 - Morgan 3 fingerprints, 2048 bits (feature reduction method applied)



universität CYPlebrity: Performance of the final models on an independent test set

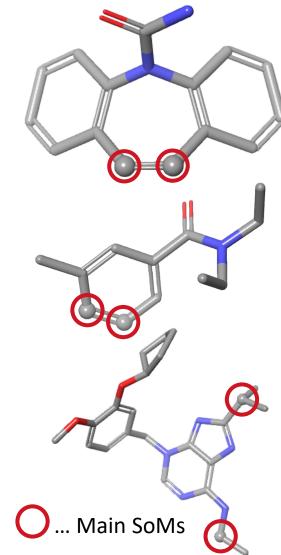
- Modeling approach:
 - Random forest
 - Morgan 3 fingerprints, 2048 bits (feature reduction method applied)



Q2: What atoms of my small molecule are susceptible to metabolism?

- Knowing the SoMs in a molecule can aid the derivation of likely metabolites and hence, optimisation strategies
- Models based on diverse approaches
- Several good models available for CYPs, few for other metabolizing enzymes
- Some models cover different mammalian species
- Accuracy: At least one known SoM among the top-2 ranked atom positions in a molecule in >85% of all cases
- + Large applicability domain

- Most models limited to CYPs
- Most models lack definition of applicability domain and error estimation
- Models able to discriminate major and minor metabolites at best



Prediction of sites of metabolism (SoMs) I

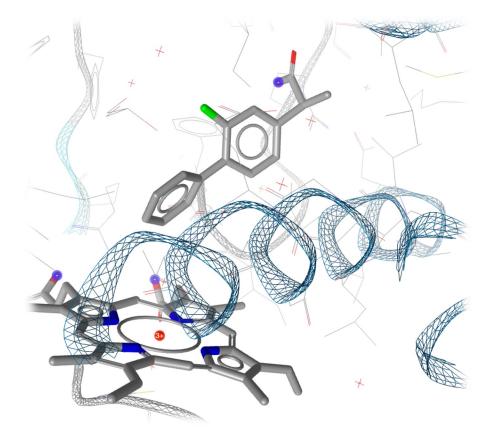
Name	Scope	Core components	Description	License	Exec.
MetaSite (Molecular Discovery)	CYPs and FMOs	Molecular interaction fields + reactivity model	Molecular interaction fields derived from protein structures plus molecular orbital calculations to identify likely SoMs	Comm.	Local
StarDrop P450 Metabolism Prediction (Optibrium)	3 CYPs	Reactivity model + ligand- based model	Combines quantum chemical analysis with a ligand-based model of CYP substrates to identify SoMs	Comm.	Local
ADMET Predictor Metabolism module (Simulations Plus)	3 CYPs	Artificial neural network ensemble	Derives likelihoods of metabolic reactions using artificial neural network ensembles on a large, curated dataset	Comm.	Local
Percepta P450 Regioselectivity module (ACD/Labs)	3 CYPs	Partial least squares	Global partial least squares-based QSAR model for calculating baseline regioselectivity; local corrections according to training data. Predicts and ranks major reaction types	Comm.	Local
P450 SoM Predictor (Schrödinger)	3 CYPs	Induced fit docking + reactivity model	Induced fit docking in combination with a quantum chemical model	Comm.	Local

Prediction of sites of metabolism (SoMs) II

Name	Scope	Core components	Description	License	Exec.
MetaPrint2D	Any	Atom mapping + statistical model	Derives likelihoods of metabolic transformation for atoms with a defined atom environment by mining large biotransformation databases.	No longer	available
SMARTCyp	7 CYPs	Reactivity model derived from DFT calculations	Lookup table of DFT-derived activation energies for fragments	Free	Web, local
Xenosite	9 CYPs	Artificial neural network	Machine learning model for SoM prediction	Free	Web
SOMP	5 CYPs + UGTs	PASS algorithm	Combination of the PASS algorithm with labeled multilevel neighborhoods of atom (LMNA descriptors)	Free	Web
FAME (3 rd generation)	Any	Random forest	Machine learning model for SoM prediction	Free	Web, local

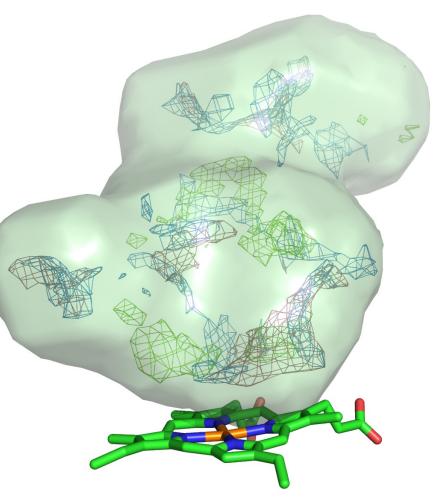
Approaches to SoM prediction: Structure-based approaches

- Focus on geometrical aspects
- Mostly automated ligand docking approaches
- Advantages
 - More insight into the orientation of a ligand at the binding site
 - Understand stereoselectivity in metabolism
- Limitations and challenges
 - The usual docking problems, but CYPs are particularly challenging because of protein flexibility and lack of a defined pharmacophore
 - $^{\circ}$ No consideration of chemical reactivity
 - Requires expert knowledge and only is usable with individual protein-ligand pairs



Approaches to SoM prediction: Molecular interaction fields

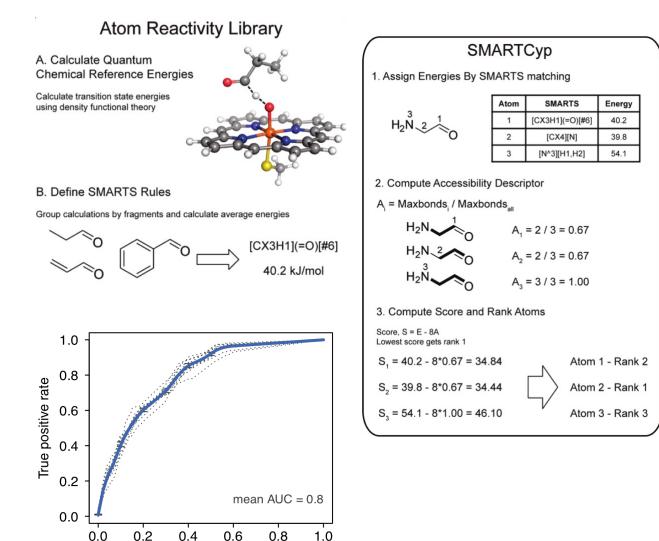
- Structure-based approach
- Probes representing a specific chemical property (e.g. a carbor oxygen, representing H-bond acceptor functionality) are move a grid to identify favorable interaction spots and derive grid me
- Consideration of side chain flexibility
- Usually combined with reactivity models



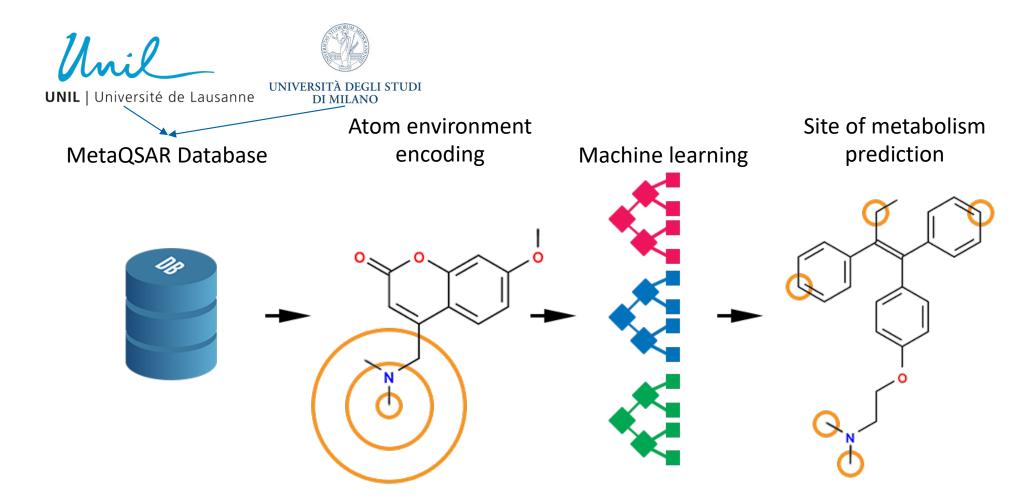
Reactivity models for SoM prediction

False positive rate

- Identification of SoMs based on reaction barriers (activation energies of carbon sites)
- SMARTCyp: Look-up table of hydrogen abstraction energies
- Usually combined with a method to take steric accessibility into account
- Advantages
 - Good accuracy
- Limitations and challenges
 - Limited coverage of reaction types and atom environments
 - $\circ\,$ No explicit consideration of protein structure



Development of FAst MEtabolizer (FAME)

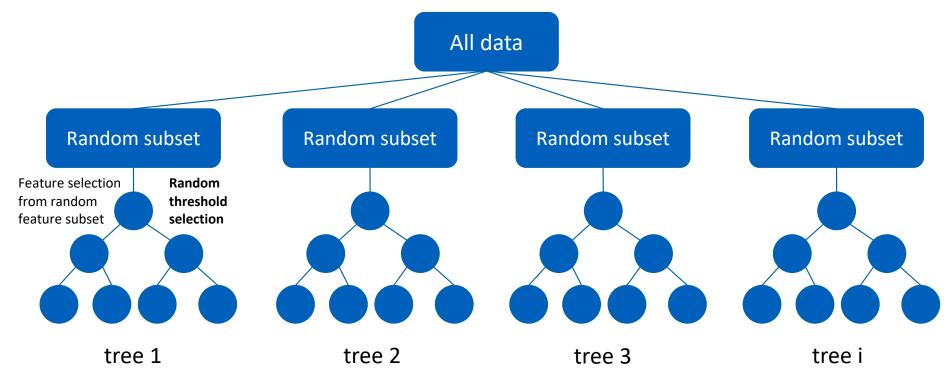


FAst Metabolizer (FAME)

	FAME 1 (2013)	FAME 2 (2017)	FAME 3 (2019)
Training set source	Metabolite DB (proprietary, discontinued)	Zaretzki Dataset	MetaQSAR DB
Training set size	Up to ~21,000 substrates	Up to ~540 substrates	Up to ~2150 substrates
CYP P450 enzymes	Yes	Yes	Yes
Phase 1 metabolism	Yes	CYPs only	Yes
Phase 2 metabolism	Yes	No	Yes
SoM quality	Automated assignment based on substructure matching	Expert-curated but some quality issues	Expert-curated
Machine learning approach	Random forest	Extremely ran	domized trees
Descriptors	15 2D-descriptors including Sybyl atom types	Circular fingerprints enc plus 15 2D-	oding Sybyl atom types descriptors
Applicability domain definition and error estimation	No	No	Yes
Prediction accuracy	Mediocre	High	High
Availability	Discontinued	Software package	Software package and web service

FAME 3: Model development

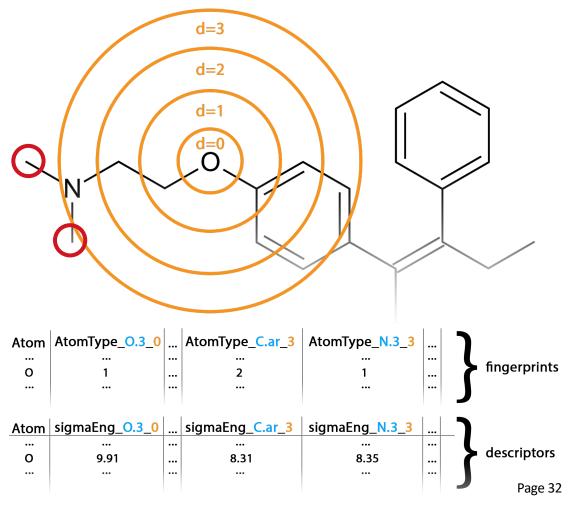
- MetaQSAR database split into training set (80%) and test set (20%)
- Four different sets of descriptors (ATF, CDK, circCDK and QC) explored
- Feature reduction down to max. of 400 by ANOVA F-Test
- Model generation: Extremely randomized trees
- Hyperparameters derived by grid search with 10-fold cross-validation



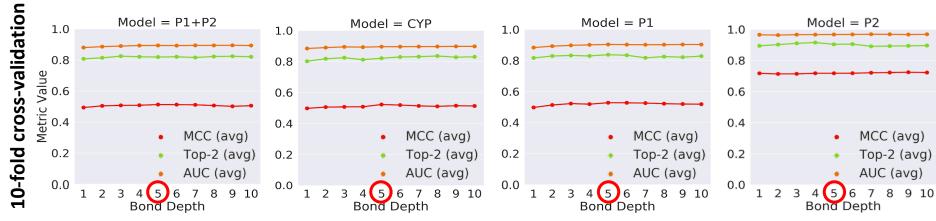
FAME 3: Atom descriptors

- Four sets of descriptors have been explored
- Combination of ATFs with circCDK descriptors identified as most suitable descriptors set

Acronym	Description
ATF	Circular fingerprint based on Sybyl atom types
CDK	15 Basic 2D descriptors implemented in CDK
circCDK	Circular descriptors derived from the CDK descriptor set
QC	10 AM1-based descriptors calculated with MOPAC

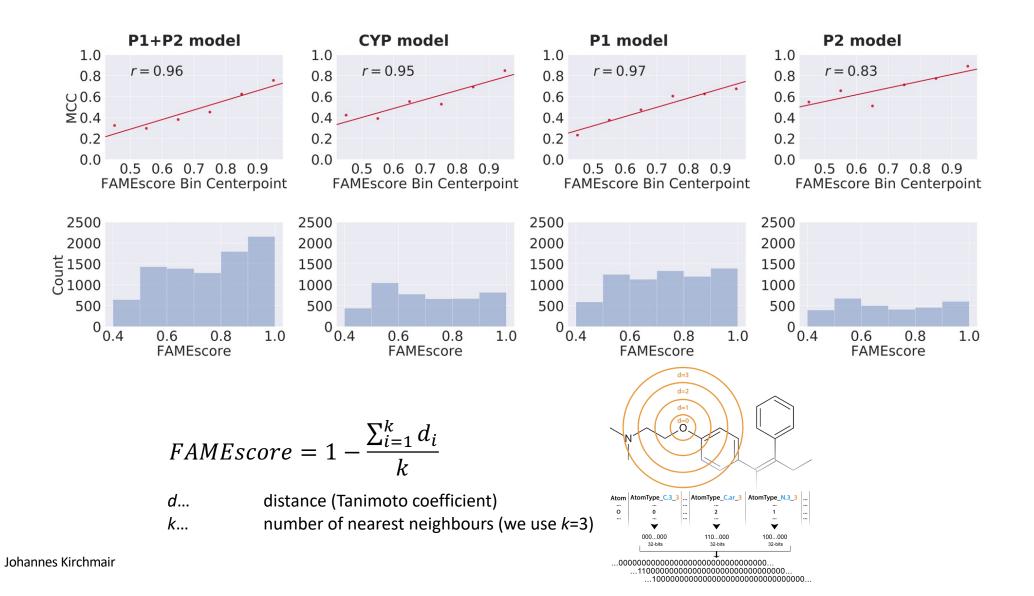


FAME 3: Performance of "circCDK+ATF" models



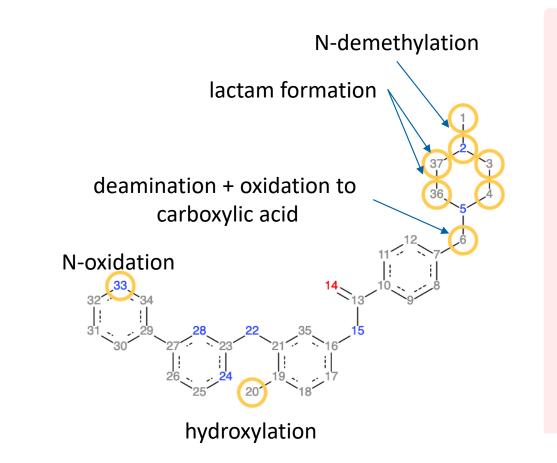
		Model	МСС	AUC	Тор-2
		P1+P2	0.50	0.90	82%
ata	പ	P1+P2 100+	0.55	0.92	87%
test on holdout data	oth=	CYP CYP 100+	0.57	0.92	90%
oplo		CYP 100+	0.63	0.94	86%
on h	pond	P1	0.53	0.88	83%
test	Q	P1 100+	0.52	0.92	80%
		P2	0.71	0.97	92%
		P2 100+	0.75	0.97	91%

FAME 3: Performance of the final models on holdout data



31-Jan-23

universität FAME 3: Prediction of the sites of metabolism of imatinib



Model: P1+P2 (depth: 5)

Mole	Molecule mol_1				
Atom	Probability	FAMEscore			
N.2	0.888	0.785			
C.1	0.884	0.809			
C.36	0.684	0.944			
C.4	0.684	0.944			
C.6	0.668	0.808			
C.20	0.66	0.826			
C.37	0.652	0.939			
C.3	0.652	0.939			
N.33	0.644	0.912			
C.13	0.128	0.804			
N.22	0.044	0.814			
N.5	0.044	0.788			

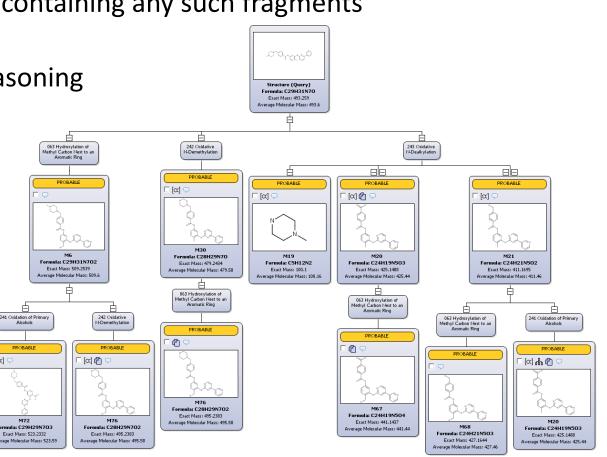
Q3: What are the likely metabolites of my compound?

Dominated by rule-based (expert) systems

- Include knowledge-bases that are enormously useful for the interpretation of predictions
- Increasingly combined with site-of-metabolism prediction models
- Latest development: transformers trained on chemical reaction data and fine-tuned on metabolic reaction data¹
- + Several good models available for phase I and II metabolism (mostly commercial)
- + Several models cover different (mammalian) species
- Limited accuracy: very high number of predicted metabolites
- Ranking the likelihood of metabolites is a major challenge and bottleneck

The Prediction of metabolite structures: Expert-curated biotransformation dictionaries (expert systems/knowledge-based systems)

- A set of (expert-) curated biotransformation rules ("Dictionary") is applied to predict likely metabolites
 - Rules encode fragments and their associated biotransformations
 - Transformations are applied to any molecules containing any such fragments
- Advantages
 - Knowledge base provides rational basis for reasoning
 - Emulation of an expert panel
- Limitations and challenges
 - Combinatorial explosion problem: Very large number of metabolites may be generated → increasingly combined with other approaches in an attempt to overcome this problem
 - \circ Metabolite ranking is insufficient
 - $\circ\,$ Lack of effective visualization
- Leading software: Derek Nexus (Lhasa Ltd.)



Prediction of metabolite structures I

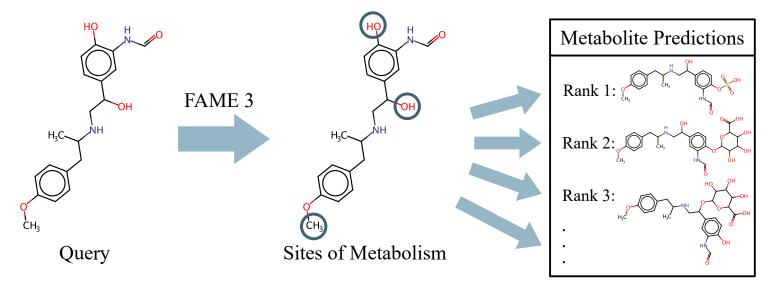
Name	Coverage	Core components	Description	License	Exec.
Meteor Nexus (Lhasa)	Any	Knowledge-based system + SoM predictor	Contains three different methodologies for assessing the likelihood of metabolites. Toxicity of metabolites can be directly assessed	Comm.	Local
TIMES (LMC, Oasis)	Any	Knowledge-based system	Utilizes a biotransformation library and a heuristic algorithm to generate metabolic maps	Comm.	Local
MetaSite (Molecular Discovery)	CYPs and FMOs	Molecular interaction fields	Produces a comprehensive set of likely metabolites from a set of metabolic reactions. Connection to Mass-MetaSite for Metabolite-ID	Comm.	Local
MetaDrug (Thomson Reuters)	Any	Knowledge-based system	Generates metabolites from a biotransformation dictionary. Toxicity of metabolites can be directly assessed	Comm.	Web
SyGMa	Any	Rule-based system	Generates structures of likely metabolites based on rules derived from Biovia's Metabolite database	Free	Local

Prediction of metabolite structures II

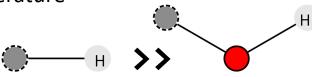
Name	Coverage	Core components	Description	License	Exec.
EAWAG-BBD Pathway Prediction System	Any	Knowledge-based system	Rule-based system specialized in microbial catabolic metabolism of environmental pollutants. Classification of metabolites with respect to their likelihood	Free	Web
MetaPrint2D-React	Any	Atom mapping + statistical model	Generates structures of likely metabolites based on the MetaPrint2D data mining approach	Free	No longer available
SMARTCyp + Toxtree	7 CYPs	SMARTCyp + rule-based system	Uses a set of rules to generate metabolites on sites of metabolism predicted by SMARTCyp	Free	Local
OECD Toolbox	Liver metab.	Rule-based approach similar to the one implemented in TIMES	Various different models for predicting likely metabolites	Free	Local
GLORYx	Any	Rule-based approach	Combines SOM prediction with rule-based metabolite prediction for enhanced metabolite ranking	Free for academic use	Web and local
MetaTrans	Any	Deep learning transformer approach	Trained on chemical reaction data and fine- tuned on metabolism data	Free	Local

GLORYx: Predictor of likely metabolites

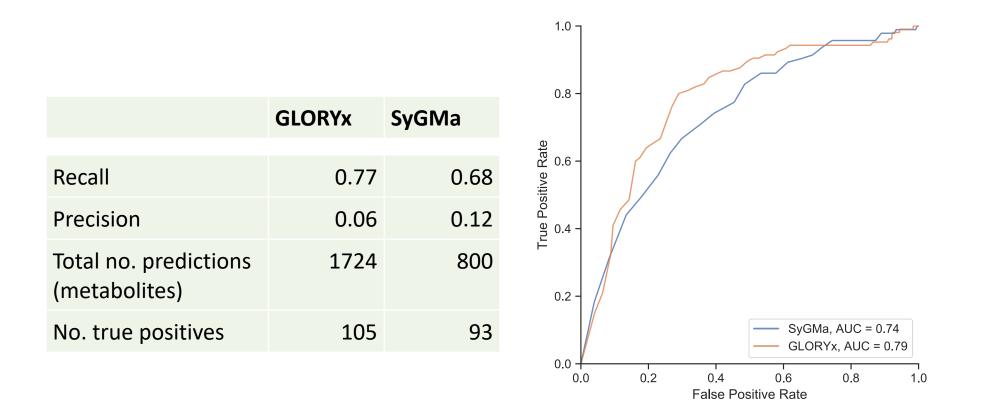
Christina de Bruyn Kops



- 1. Extracted reaction types for phase I and phase II enzymes from the literature
- 2. Represented reaction types by SMIRKS:
 - e.g. "[c:1][H:2]>>[c:1][O][H:2]"
- 3. Applied transformations using AMBIT SMIRKS
 - Open-source Java library (IdeaConsult Ltd)
- 4. The transformations are only applied at those positions



GLORYx: Performance on an external test set



Study	Endpoint(s)	Modeling approach	Integration of metabolism	Performance of the metabolism- aware approach as compared to the baseline models
Dimitriev et al. 2017	Rat acute toxicity	Linear regression models trained on LD ₅₀ values for 3000 parent compounds	Predictions for measured metabolites integrated by, e.g., averaging predicted LD ₅₀ values	R ² increased by 0.03 (from 0.78 to 0.81)
Filimonov et al. 2020	28 endpoints	Bayesian classification trained on up to 5583 parent compounds per endpoint	Predictions for measured metabolites integrated by max fusion	Precision increased by up to 0.14 Recall increased by up to 0.16
Mekenyan et al. 2004	In vitro mutagenicity (AMES assay)	Decision trees	Predictions for predicted metabolites integrated by max fusion	Performance dropped but some toxic compounds were identified correctly via their mutagenic metabolites
Further works from the LMC	Skin sensitization, respiratory sensitization, liver genotoxicity, etc.	Decision trees	Predictions for predicted metabolites	No comparison to baseline approach was performed

Integration of metabolism prediction in toxicity prediction

D • BASF

We create chemistry

Marina Garcia de Lomana

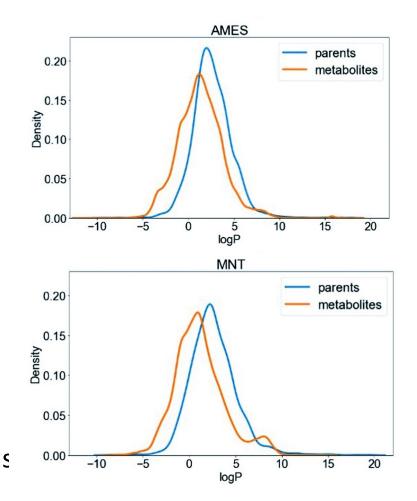
Endpoint/testing system	No. toxic compounds	No. non-toxic compounds	Ratio
Ames mutagenicity (considering metabolic activation with S-9 liver extract)	1908	3153	1:2
Micronucleus test (MNT) for assessing genotoxicity	315	1460	1:5
Drug induced liver injury (DILI)	435	226	2:1
Drug-induced cardiological complications (DICC)	965	2243	1:2
Murine local lymph node assay (LLNA)	521	749	1:1

Metabolites predicted with Meteor:

- Leading software for metabolite prediction
- Use of the recommended "SOM scoring method"
- Distinguishes ~500 types of biotransformations (phase 1 and 2)
- Descriptors: count-based Morgan2 fingerprints, physicochemical properties, CDDD descriptors
- Machine learning algorithm: random forest (other algorithms were also explored)
 - +/-feature selection (LASSO), +/- data balancing with SMOTENC, +/- filtering of certain metabolites

Analysis of the chemical space of the parent compounds and their <u>predicted</u> metabolites

- Metabolites predicted by Meteor:
 - $^\circ$ Up to 828
 - Median: 8 to 12 (depending on the data set)
- Physicochemical properties of the metabolites of "toxic" and "non-toxic compounds" generally similar
 Metabolites of "toxic compounds" have, on average, a higher ClogP (+0.8)
- Over-representation of certain types of biotransformations among "toxic compounds" observed; however, these observations universal



Experiment 1: Integration of metabolism information into model input

Random forest models	Parent encoding	Metabolite encoding	Performance during 5-fold CV
Baseline models		Not encoded	Mean F1 scores ranging from 0.64 (MNT) to 0.82 (Ames)
Type A Metabolism- aware models	Morgan2 fingerprints and/or	Morgan2 fingerprints and/or RDKit physchem properties for the five top-ranked metabolites	Minor gains in performance which did not exceed +0.04 among the evaluated metrics
Type B Metabolism- aware models	RDKit physchem properties	Biotransformation signature encoding the no. occurrences of the individual types of biotransformations	No gain in performance, also not when applying (addn.) feature selection

wien

Experiment 2: Combination of the predictions obtained for universität parent compounds and predicted metabolites

Random forest models	Metabolite encoding	Combination of predicted probabilities of toxicity	Gains in performance over the baseline models
Baseline models	Not encoded	n/a	n/a
Type C metabolism- aware models	Dedicated models for the parent compounds	Mean predicted probability over <u>all</u> parent compounds and predicted metabolites	No gain
Type D metabolism- aware models		Median predicted probability over <u>all</u> parent compounds and predicted metabolites	No gain
Type E metabolism- aware models	lism- odels F models for lism- the labelled,	Maximum predicted probability over <u>all</u> parent compounds and predicted metabolites	No gain
Type F metabolism- aware models		Mean between the predicted probabilities for the parent compound and the metabolite predicted as most likely toxic	F1 scores, on average, +0.03 (only few diffs. statistically significant)
Type F' metabolites metabolism- aware models	Identical to Type F, with the additional filtering of metabolites with ClogP < 3 and phase II metabolites	F1 scores, on average, +0.06	

Conclusions

- Computational methods can make a significant contribution to understanding metabolism, yet global models for quantitative prediction are still out of reach:
 - Small molecule-enzyme interaction (++)
 - Sites of metabolism (+++)
 - Structures of likely metabolites (+~)
- Integration of metabolism prediction in toxicity prediction is the logical next step
 - Limited success in integrating metabolism and toxicity prediction so far
 - Primary challenge: Scarcity of the available data, in particular of data on measured and labeled (i.e. toxic, non-toxic) metabolites

NERDD

New E-Resource for Drug Discovery

nerdd.univie.ac.at

Stork et al., Bioinformatics 2019, 36, 1291–1292

