6th Advanced In silico Drug Design workshop/challenge

1Pr

Univerzita Palackého v Olomouci

30 January - 3 February 2023 Olomouc, Czech Republic

Multi-instance learning

Pavel Polishchuk

Institute of Molecular and Translational Medicine Faculty of Medicine and Dentistry Palacky University

> pavlo.polishchuk@upol.cz qsar4u.com

Molecular representation levels

Molecular representation levels

Molecular graph is only skeleton of a molecule Real interactions between molecules go through their surface!

Comparative Molecular Fields Analysis (CoMFA)

Cramer, R. D.; Patterson, D. E.; Bunce, J. D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. *Journal of the American Chemical Society* **1988**, *110*, 5959-5967

CoMFA: summary

- + clear interpretation
- + explicit representation of stereochemistry
- dependence on chosen conformations
- dependence on alignment algorithm
- sensitivity to cell size
- sensitivity to scheme of partial atomic charges calculation
- doesn't describe properly H-bonding and π -interactions

"Bioactive" conformation

Multi-conformer challenge

4D QSAR

4D QSAR

Article

pubs.acs.org/jcim

Benchmarking 2D/3D/MD-QSAR Models for Imatinib Derivatives: How Far Can We Predict?

Phyo Phyo Kyaw Zin, Alexandre Borrel, and Denis Fourches*

Figure 15. Native 10-fold cross-validation predictions of pKi-reported Imatinib analogues by DNN-based regression models using descriptors of (A) 2D, (B) 2D+3D, (C) 2D+3D+4D/MD, and (D) MD all frame. Red dotted line represents an ideal fit between experimental pKi and predicted pKi.

4D QSAR: summary

- + clear interpretation
- + explicit representation of stereochemistry
- dependence on alignment algorithm
- equal treating of all conformers (some weighted scheme exist to solve this)

Multi-instance learning

Artificial Intelligence 89 (1997) 31-71

Artificial Intelligence

Solving the multiple instance problem with axis-parallel rectangles

Received August 1994; revised July 1996

Multi-instance learning: naïve approaches (wrappers)

Bag-wrapper: averaging of conformation descriptors

Instance-wrapper: averaging of conformation predictions

Multi-instance learning: conventional approaches

Diversity density

Multi-instance learning: NN approaches

Bag-Net: averaging of conformation embeddings

Instance-Net: averaging of conformation scores

Multi-instance learning: attention-based NN approach

Bag-Attention Net: weighted averaging of conformation embeddings

Multi-instance learning: key instance detection (KID)

Multi-instance learning with key instance detection

Model-specific:

- instance-based
- bag-based

Model-agnostic:

- single instance prediction
- single instance masking

Pmapper: 3D pharmacophore descriptors

canonical quadruplet signature = (canonical graph signature, stereoconfiguration)

https://github.com/DrrDom/pmapper

Kutlushina, A. et al., Ligand-Based Pharmacophore Modeling Using Novel 3D Pharmacophore Signatures. *Molecules* **2018**, 23, 3094.

MIL study: conformer and descriptor generation

175 data sets from ChEMBL

MIL study: comparison of MIL algorithms

	3D/MI/Bag-AttentionNet	3D/MI/Instance-Wrapper	3D/MI/Bag-Wrapper	3D/MI/Bag-Net	3D/MI/Instance-Net
CHEMBL1855	0.248	0.272	0.322	0.201	0.207
CHEMBL2034	0.624	0.664	0.645	0.644	0.638
CHEMBL261	0.313	0.404	0.326	0.322	0.321
CHEMBL322	0.348	0.432	0.357	0.377	0.375
CHEMBL2094122	0.254	0.310	0.420	0.422	0.430
-CHEMBL238	0.395	0.397	0.367	0.374	0.373
CHEMBL210	0.535	0.636	0.546	0.548	0.558
CHEMBL3571	0.357	0.420	0.359	0.383	0.379
CHEMBL222	0.418	0.437	0.391	0.400	0.395
CHEMBL1899	0.255	0.660	0.578	0.584	0.582
	5 	4 3	2) data sets
3D/MI/Bag-Net ^{3.34}			1.	⁷⁹ 3D/MI/Ins ⁻	tance-Wrappe
3D/MI/Bag-AttentionNet ^{3.33}			3.	²⁶ 3D/MI/Bag	g-Wrapper
3D/I	MI/Instance-Net ^{3.27}	7			

Groups of models that are not significantly different (at a confidence level of 0.05) are connected by the thick line

Zankov, D. V. et al, QSAR Modeling Based on Conformation Ensembles Using a Multi-Instance Learning Approach. 19 Journal of Chemical Information and Modeling **2021**, 61, 4913-4923

MIL study: comparison between 2D, 3D and MIL models

MIL study: comparison between 2D, 3D and MIL models

Zankov, D. V. et al, QSAR Modeling Based on Conformation Ensembles Using a Multi-Instance Learning Approach. 21 Journal of Chemical Information and Modeling **2021**, 61, 4913-4923

MIL study: comparison between 2D and MIL models

Number of rotatable bonds

Fraction of distinct Bemis-Murcko scaffolds

Zankov, D. V. et al, QSAR Modeling Based on Conformation Ensembles Using a Multi-Instance Learning Approach. *Journal of Chemical Information and Modeling* **2021**, 61, 4913-4923

MIL study: identification of "bioactive" conformers

MIL study: identification of "bioactive" conformers

Selected compounds had average RMSD of generated conformers > 2A relative to PDB structure

Zankov, D. V. et al, QSAR Modeling Based on Conformation Ensembles Using a Multi-Instance Learning Approach. 24 Journal of Chemical Information and Modeling **2021**, 61, 4913-4923

Enantioselectivity prediction

Enantioselectivity prediction

Madal	MAE of $\Delta\Delta G$ predictions (kcal/mol)				
	Reaction-out set	Catalyst-out set	Both-out set		
2D model	0.16	0.30	0.36		
3D Single-conformation model	0.15	0.41	0.44		
3D Multi-conformation model	0.13	0.22	0.26		
Zahrt's model	0.16	0.21	0.24		

Zahrt, A.F. et al. Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning. *Science* **2019**, 363, eaau5631

Enantioselectivity prediction: extrapolation scenario

Model	R^2_{Test}	MAE _{Test}
2D model	0.10	0.34
3D Single-conformation model	0.64	0.24
3D Multi-conformation model	0.68	0.21
Zahrt's model	-	0.33

Atoms as instances

Xiong, J.; Li, Z.; Wang, G.; Fu, Z.; Zhong, F.; Xu, T.; Liu, X.; Huang, Z.; Liu, X.; Chen, K.; Jiang, H.; Zheng, M., Multi-instance learning of graph neural networks for aqueous pKa prediction. *Bioinformatics* **2021**, 38, 792-798.

Atoms as instances

Xiong, J.; Li, Z.; Wang, G.; Fu, Z.; Zhong, F.; Xu, T.; Liu, X.; Huang, Z.; Liu, X.; Chen, K.; Jiang, H.; Zheng, M., Multi-instance learning of graph neural networks for aqueous pKa prediction. *Bioinformatics* **2021**, 38, 792-798.

Peptide sequences as instances

Bag of protein subsequences

Isoforms as instances

Li, HD., Menon, R., Eksi, R. et al. A Network of Splice Isoforms for the Mouse. Sci Rep 6, 24507 (**2016**). https://doi.org/10.1038/srep24507

Take-home message

- Multi-instance models outperform both single-instance 3D models and traditional QSAR models built on 2D descriptors in many cases
- Multi-instance models is good alternative to 2D modeling if the latter fails
- Multi-instance neural network with an attention mechanism can correctly identify a "bioactive" conformation close to the experimental structure of a ligand retrieved from PDB
- Atoms, tautomers, protomers, stereoisomers, etc can be considered as instances

