6th Advanced in silico Drug Design workshop/challenge 2023

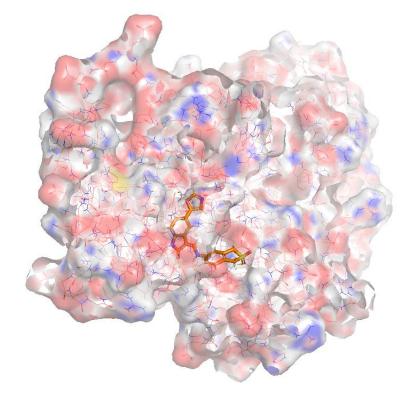
High-throughput MD tutorial

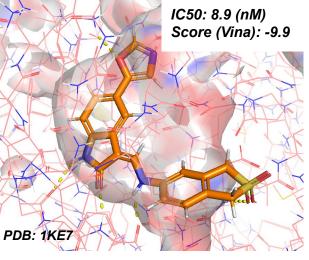
Aleksandra Ivanova PhD student Palacký University supervisor: **dr. Pavel Polishchuk**

PuTTY

PuTTY Configuration	Category:	
Category:	Logging	Credentials to authenticate with
Session Logging Terminal Keyboard Bell Features Window Appearance Behaviour Translation Selection Connection Data Proxy SSH Serial Telnet Rlogin SUPDUP Close window on exit Always Never Only on clean exit	Terminal Keyboard Bell Features Window Appearance Behaviour Translation Selection Colours Connection Data Proxy SSH Kex Host keys Cipher Auth Credentials GSSAPI TTY X11 Tunnels V	Public-key authentication Private key file for authentication: D:\school_2023\private_01.ppk Browse Certificate to use with the private key: Browse Plugin to provide authentication responses Plugin command to run SSH->Auth->Credentials

- ~\$ cp ./dd-23-13-01 ~/.ssh/
- ~\$ chmod 600 ~/.ssh/dd-23-13-01
- ~\$ ssh -i ~/.ssh/dd-23-13-01 dd-23-13-01@login1.karolina.it4i.cz




...running on Red Hat Enterprise Linux 7.x

[dd-23-13-01@login1.karolina ~]\$

Molecular Docking

Pose – a possible relative orientation of a ligand and a receptor as well as conformation of a ligand and a receptor when they are form complex Score – the strength of binding of the ligand and the receptor.

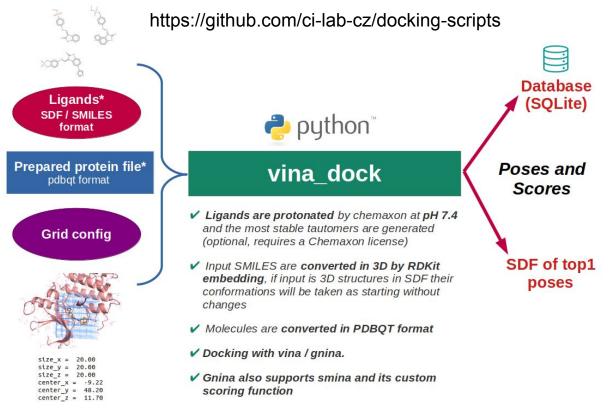
Automated scripts for Molecular Docking

https://github.com/ci-lab-cz/docking-scripts

Installation pip install moldock or the latest version pip install git+https://github.com/ci-lab-cz/docking-scripts.git Dependencies

from conda

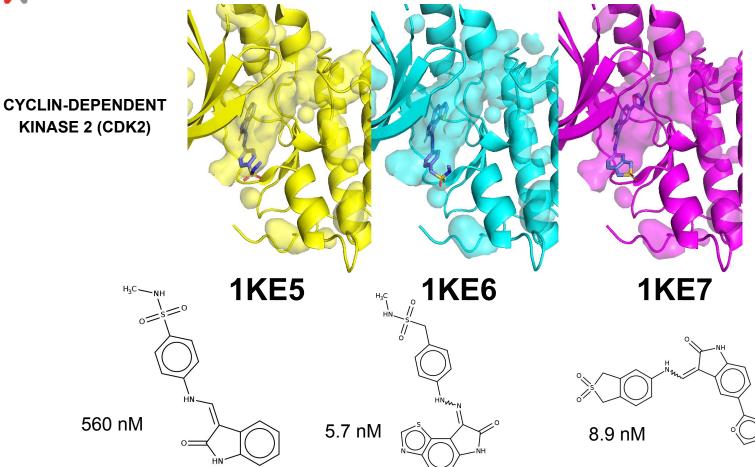
conda install -c conda-forge python=3.9 numpy=1.20 rdkit scipy dask distributed vina


from pypi

pip install meeko

Installation of gnina is described at https://github.com/gnina/gnina

Automated scripts for Molecular Docking



Tab	ole: 🔲 mols		• 🕄	8 🖪 🖨				New Record	Delete Reco
	id	* smi	smi_protonated	source_mol_block	source_mol_block_protonated	docking_score	pdb_block	mol_block	time
	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter
1	1BJU_ligand	NC(=[NH2+])clcc.	NC(=[NH2+])clccc(NC(=O)	1BJU_ligand	1BJU_ligand	-6.863	MODEL 1	1BJU_ligand	2023-01-23
2	1BJV_ligand	NC(=[NH2+])clcc.	NC(=[NH2+])clccc(NC(=O)	1BJV_ligand	1BJV_ligand	-7.524	MODEL 1	1BJV_ligand	2023-01-23
3	1C5Q_ligand	NC(=[NH2+])clcc.	NC(=[NH2+])clcc2c(I)cccc2	1C5Q_ligand	1C5Q_ligand	-6.111	MODEL 1	1C5Q_ligan	2023-01-23
4	1C5S_ligand	NC(=[NH2+])clcc.	NC(=[NH2+])clcc2cccc2s1	1C5S_ligand	1C5S_ligand	-5.889	MODEL 1	1C5S_ligan	2023-01-23
5	1C5T_ligand	NC(=[NH2+])clcc.	NC(=[NH2+])clcc2cccnc2s1	1C5T_ligand	1C5T_ligand	-6.156	MODEL 1	1C5T_ligand	2023-01-23
6	1F0T_ligand	NC(=[NH2+])clcc.	NC(=[NH2+])clccc(O)c(CN2	1F0T_ligand	1F0T_ligand	-7.81	MODEL 1	1F0T_ligand	202 <mark>3-</mark> 01-23 .
7	1F0U_ligand	COC(=O)C(Cc1cc	COC(=O)[C@H]	1F0U_ligand	1F0U_ligand	-7.134	MODEL 1	1F0U_ligand	2023-01-23 .
8	1G36_ligand	Cclnc2cccc2n1C.	Cclnc2cccc2n1Cclccc2c(c	1G36_ligand	1G36_ligand	-8.78	MODEL 1	1G36_ligan	2023-01-23 .
9	1GHZ_ligand	NC(=[NH2+])c1cc.	NC(=[NH2+])clccc2[nH]c(1GHZ_ligand	1GHZ_ligand	-8.197	MODEL 1	1GHZ_ligan	2023-01-23
10	1GI1_ligand	NC(=[NH2+])c1cc.	NC(=[NH2+])c1ccc2[nH]c(1GI1_ligand	1GI1_ligand	-7.932	MODEL 1	1GI1_ligand	2023-01-23
11	1GI6_ligand	NC(=[NH2+])clcc.	NC(=[NH2+])c1ccc2[nH]c(1GI6_ligand	1GI6_ligand	-8.263	MODEL 1	1GI6_ligand	2023-01-23
12	1GJ6_ligand	NC(=[NH2+])clcc.	NC(=[NH2+])clcc2cc(1GJ6_ligand	1GJ6_ligand	-8.468	MODEL 1	1GJ6_ligand	2023-01-23
13	1K1I_ligand	NC(=[NH2+])clcc.	NC(=[NH2+])c1cccc(C[C@H	1K1I_ligand	1K1I_ligand	-8.946	MODEL 1	1K1I_ligand	2023-01-23.
14	1K1J_ligand	COC(=0)C1CCN(C.	COC(=0)C1CCN(C(=0)[C@	1K1J_ligand	1K1J_ligand	-7.579	MODEL 1	1K1J_ligand	2023-01-23
15	1K1L_ligand	NC(=[NH2+])c1cc.	NC(=[NH2+])c1cccc(C[C@H	1K1L_ligand	1K1L_ligand	-6.695	MODEL 1	1K1L_ligand	2023-01-23

Ta	able: 🔲 setup			8 🔏 🖪 🖨
	protonation	protonation_done	protein_pdbqt	protein_setup
	Filter	Filter	Filter	Filter
1	1	1	ATOM 1	size_x =

Output SQLite DB

Automated scripts for Molecular Docking

ssh -i ~/.ssh/dd-23-13-01 dd-23-13-01@login1.karolina.it4i.cz

mkdir docking_tutorial cd docking_tutorial cp /mnt/proj2/dd-23-13/docking_tutorial/{ligands_pH74.smi,protein_prepared.pdbqt,config.txt}.

qsub -A DD-23-13 -v input=\$(pwd)/ligands.smi,protein=\$(pwd)/protein_prepared.pdbqt,config=\$(pwd)/config.txt /mnt/proj2/dd-23-13/script_vina.pbs

Prepare docked molecules for MD

module load Anaconda3 source activate gmxMMPBSA

python /mnt/proj2/dd-23-13/md-scripts/scripts/sdf2mols.py -i docking_tutorial/ligands_pH74_protein_prepared_docking_vina_output.sdf -o docking_tutorial/mols

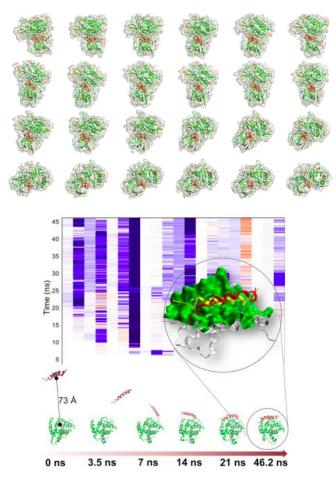
High-throughput MD

Run MD simulation by one command:

ssh -i ~/.ssh/dd-23-13-01 dd-23-13-01@login1.karolina.it4i.cz

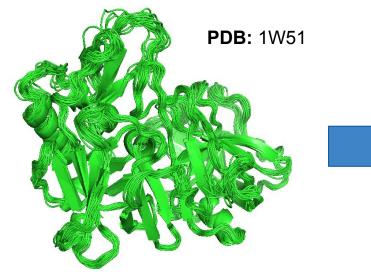
mkdir md_tutorial
cd md_tutorial
cp /mnt/proj2/dd-23-13/md_tutorial/{protein_prepared.pdb,ligand.mol} .

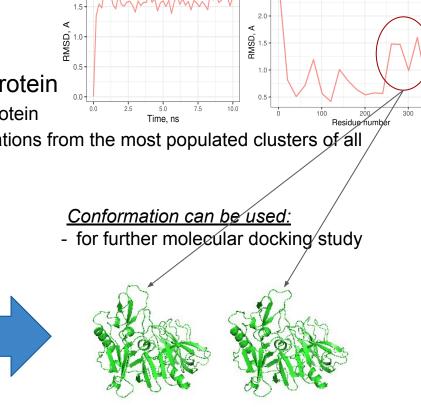
qsub -A DD-23-13 -v Ifile=\$(pwd)/ligand.mol,pfile=\$(pwd)/protein_prepared.pdb,script_path=/mnt/proj2/dd-23-13/md-scripts/scripts /,wdir=ligand_01ns,mdtime=0.1,gromacs_version='GROMACS/2021.4-foss-2020b-PLUMED-2.7.3' /mnt/proj2/dd-23-13/md-scripts/Protein-Ligand_MD_PBGBSA/01_complex_preparation_md.pbs


in case of multiple ligands:

for i in mols/*.mol;do fname=\${i##*/}; name=\${fname%.*}; echo \$i; qsub -A DD-23-13 -v lfile=\$(pwd)/\$i,pfile=\$(pwd)/protein_prepared.pdb,script_path=/mnt/proj2/dd-23-13/md-scripts/scripts/,wdir=\$(pwd)/\$name,mdtime=0.1,gromacs_version='GROMACS/2021.4-foss-2020b-PLUMED-2.7.3' /mnt/proj2/dd-23-13/md-scripts/Protein-Ligand_MD_PBGBSA/01_complex_preparation_md.pbs;done

Molecular dynamics


- 1. MD simulations mimic the physical motions of atoms present in the actual environment;
- The atoms and molecules are allowed to interact for a fixed period of time, giving <u>a view of the</u> <u>dynamic "evolution" of the system.</u>
- to explore conformational space
- to explore biological process of molecular recognition
- to investigate ligand pose stability
- to estimate binding affinity of protein-ligand complexes



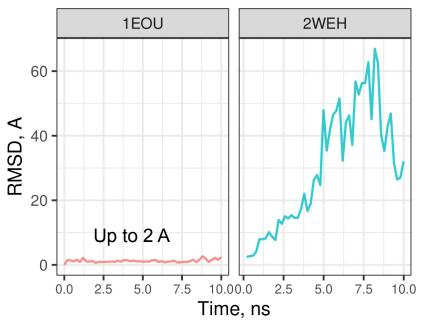
- To explore different conformation of protein
 - To investigate internal-flexibility of protein Ο
 - For practical use we select conformations from the most populated clusters of all Ο conformations

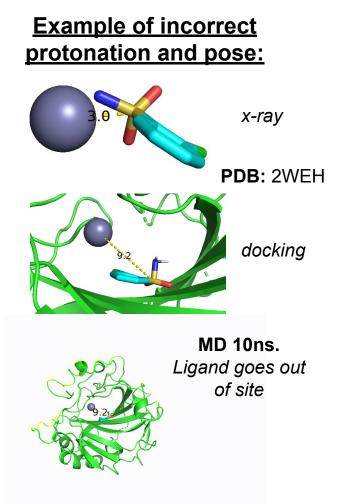
RMS fluctuation example 10ns 310K 1W51_protein

2.5

RMSD example 10ns 310K

1W51_protein

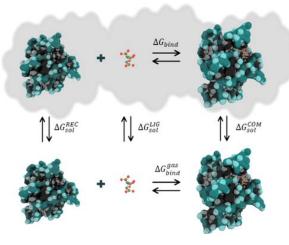

400

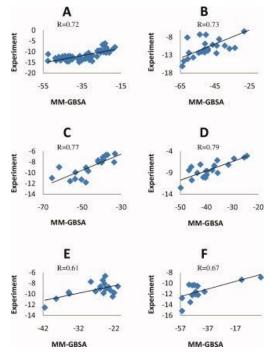


What can be done by MD

• To explore stability of ligand pose

RMSD example 10ns 310K





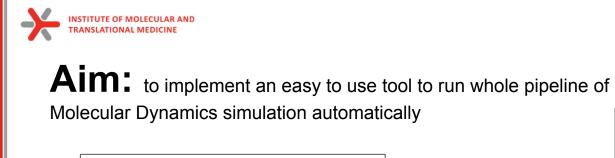
What can be done by MD

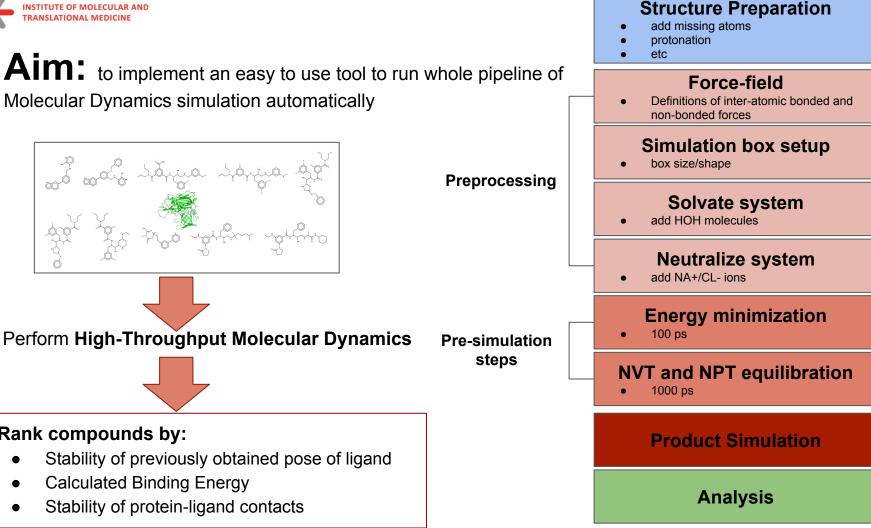
 to estimate binding affinity of protein-ligand complexes

Correlation between **MM-GBSA** predicted and experimental binding free energy.

Yang T, Wu JC, Yan C, Wang Y, Luo R, Gonzales MB, Dalby KN, Ren P. Virtual screening using molecular simulations. Proteins. 2011 Jun;79(6):1940-51. doi: 10.1002/prot.23018. Epub 2011 Apr 12. PMID: 21491494; PMCID: PMC3092865.

Valdés-Tresanco, M.S., Valdés-Tresanco, M.E., Valiente, P.A. and Moreno E. *gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS.* Journal of Chemical Theory and Computation, 2021 17 (10), 6281-6291. <u>https://pubs.acs.org/doi/10.1021/acs.jctc.1c00645</u>. *MMPBSA.py:* An Efficient Program for End-State Free Energy Calculations Bill R. Miller III, T. Dwight McGee Jr., Jason M. Swails, Nadine Homeyer, Holger Gohlke, and Adrian E. Roitberg Journal of Chemical Theory and Computation 2012 8 (9), 3314-3321 DOI: 10.1021/ct300418h


What can be done by MD


• to investigate protein-ligand interaction stability

[5]:	ligand protein interaction Frame	LIG1.G TYR38.A Hydrophobic	VdWContact	TYR109.A Hydrophobic	VdWContact	THR110.A Hydrophobic	TRP125.A Hydrophobic	VdWContact
	0	False	False	True	False	False	True	False
	10	False	False	True	True	False	True	False
	20	False	False	True	True	False	True	True
	30	True	False	True	False	False	True	True
	40	False	False	True	False	True	True	True
	50	True	False	True	True	False	False	False
	60	False	False	True	False	False	False	False
	70	False	False	True	True	False	True	False
	80	False	False	True	False	False	True	False
	90	False	False	False	False	False	True	False

Bouysset, C., Fiorucci, S. ProLIF: a library to encode molecular interactions as fingerprints. J Cheminform 13, 72 (2021). https://doi.org/10.1186/s13321-021-00548-6

18

Rank compounds by:

- Stability of previously obtained pose of ligand
- Calculated Binding Energy •
- Stability of protein-ligand contacts

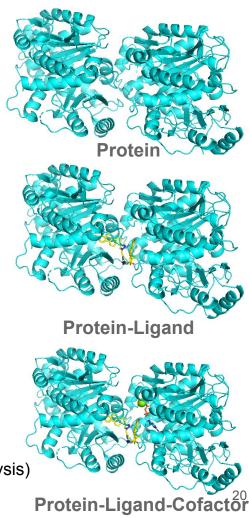
📮 ci-lab-cz / md-scripts Public

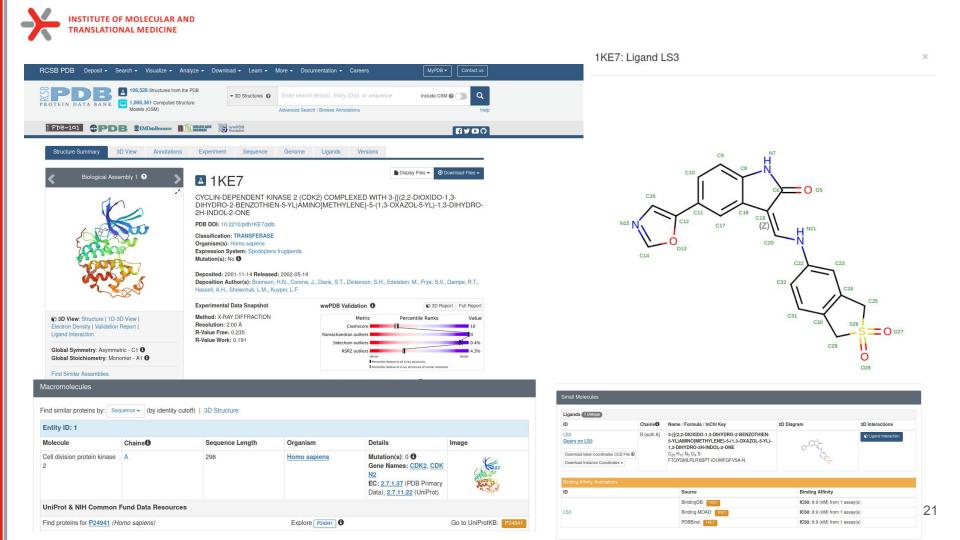
☆ Edit Pins ▼ ③ Watch 2 ▼ ♀ Fork 3 ↓ ☆ Star 2 ↓

<> Code 🕢 Issues 4 11 Pull requests 🕟 Actions 🖽 Projects 🔃 Security 🗠 Insights

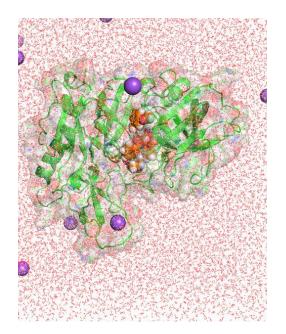
P master - md-scripts / Protein-Ligand_	MD_PBGBSA /	Go to file Add file -)[
avnikonenko and DrrDom Update READM	E.md	35e6bef 13 hours ago 🕚	History
01_complex_preparation_md.pbs	Update 01_complex_preparation_md.pbs	2 moi	nths ago
02_pbsa.pbs	Remove redundant code	3 moi	nths ago
03_sum_result_pbsa.pbs	New version of gmx_PBSA changes	3 moi	nths ago
B README.md	Update README.md	13 ho	ours ago
E README.md			
Protein-ligand n calculation	nolecular dynamics simulati	on + PB(GB)SA	
Scripts:			
01_complex_preparation_n	nd.pbs	he tool is already	in i n

- 02_pbsa.pbs
- 03_sum_result_pbsa.pbs


The tool is already implemented and free available


Command: qsub -v lfile=ligand.mol,pfile=protein.pdb,script_path=/scripts,wdir=ligand_protein_1ns,mdtime=1 01_complex_preparation_md.pbs

Main features of the tool:


- User control of simulation time
 - from 10 ps to 1 µs
- Default preset optimal parameters to run Molecular Dynamics
 - can be easily modified
 - useful as teaching source
- Support of modeling of different molecular systems
 - o protein only, protein-ligand, protein-ligand-cofactor
- Automatic analysis of simulation:
 - RMSD plots for both protein and ligand objects
 - Plot of flexibility of each amino acids (RMSF)
- Support of analysis by additional instruments:
 - **ProLIF**: Ligand-Protein interactions (time-dependent function, stability analysis)
 - MM(PB)GBSA: Calculation of Binding Energy

Classical Molecular Dynamics

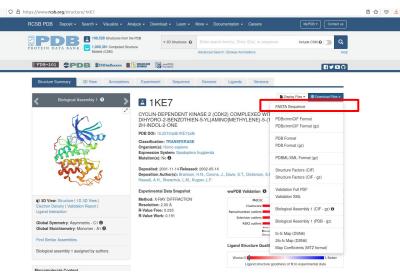
Structure Preparation Force-field Definitions of inter-atomic bonded and no-bonded forces (ligand and protein) Simulation box setup Preprocessing box size/shape Solvate system add HOH molecules Neutralize system add NA+/CL- ions **Energy minimization** 100 ps to ensure that the system has no steric Pre-simulation clashes or inappropriate geometry steps **NVT and NPT equilibration** 1000 ps equilibrate the solvent and ions around the protein **Product Simulation** Analysis

→ C @ O A https://www.cgl.ucsf.edu/chimera/ E ☆ ♡ 🡱 🛝 🗊 🗎 ≡ about _____ projects _____ people _____ publications **UCSF CHIMERA** an Extensible Molecular Modeling System **Quick Links** Chimera Search UCSF Chimera is a program for the interactive visualization and analysis of molecular structures and related data, including density maps, trajectories, and sequence alignments. It is available free of charge for Documentation noncommercial use. Commercial users, please see Chimera commercial licensing. **Getting Started** Go We encourage Chimera users to try ChimeraX for much better performance with large structures, as well as other major advantages and completely new features. ChimeraX includes a significant subset of Chimera User's Guide Google " Search features (with more to come, see the missing features list) and is under active development. Users may choose to use both programs, and it is fine to have both installed. **Command Index** Chimera is no longer under active development, and is only updated for critical maintenance. Chimera development was supported by a grant from the National Institutes of Health (P41-GM103311) that ended in Tutorials and Videos News 2018. Guide to Volume Data **Release Notes** September 27, 2022 Feature Highlight Download Website downtime: The RBVI website (Chimera, ChimeraX, What's New in Daily Builds **Pipes and Planks** etc.) and RBVI-hosted web Map of Download Locations services will be down for Galleries The PipesAndPlanks tool shows protein helices as "pipes" (cylinders) and strands as "planks" (rectangular boxes), with connectors for the intervening coil. Adjustable settings include pipe maintenance from Tue, Sep 27 9pm PDT, through Wed, possibly extending to Thu, Sep 29 5pm radius, plank width, colors, and whether to include arrowheads to show chain N→C directionality (see image how-to). Image Gallery Animation Gallery (More features...) **Publications and Talks** December 20, 2021 The RBVI wishes you a safe and happy holiday season! **Related Databases and** Software See our 2021 card and the **Citing Chimera** gallery of previous cards back to 1985. Contact Us December 17, 2021 Chimera production release 1.16 **Recent Citations** is now available. This will be the last release to support Windows 7. See the release notes for Imprinted antibody responses against SARS-CoV-2 Omicron Gallery Sample what's new. sublineages. Park YJ, Pinto D et al. Science. 2022 Nov Previous news... **Peroxiredoxin Wreath** 11;378(6620):619-627. Peroxiredoxins are enzymes that help cells cope with stressors such as high levels of reactive oxygen species. The image shows a decameric peroxiredoxin from human red blood Bending forces and nucleotide Upcoming Events state jointly regulate F-actin structure. Reynolds MJ, Hachicho cells (Protein Data Bank entry 1gmv), styled as a holiday wreath. C et al. Nature, 2022 Nov See also the RBVI holiday card gallery 10:611(7935):380-386. Bestrophin-2 and glutamine (More samples...) synthetase form a complex for glutamate release. Owji AP, Yu K et al. Nature, 2022 Nov 3;611(7934):180-187. Cryo-EM structures of human m6A writer complexes, Su S, Li S et al. Cell Res. 2022 Nov;32(11):982-994 Algorithmic design of 3D wireframe RNA polyhedra, Elonen A, Natarajan AK et al. ACS Nano. 2022 Oct 25;16(10):16608-16616. Previously featured citations... About RBVI | Projects | People | Publications | Resources | Visit Us

https://www.cgl.ucsf.edu/chimera/

1. Download structure from PDB (<u>https://www.rcsb.org/</u>) using PDBID

Download Files -> PDB Format



1. Download structure from PDB (<u>https://www.rcsb.org/</u>) using PDBID

Download Files -> PDB Format

2. Download sequence from PDB or from UniProt

Download Files -> Fasta Sequence

1. Download structure from PDB (<u>https://www.rcsb.org/</u>) using PDBID

Download Files -> PDB Format

2. Download sequence from PDB or from UniProt

Download Files -> Fasta Sequence

3. Save smiles of ligand into file (ligand.smi)

PDB-101 OPDB SEMDerResource	REBEARD WWPDB	[] Y (
		Display Files • O Download Files
		LS3
	Concerne and a second	3-[[(2,2-DIOXIDO-1,3-DIHYDRO-2-BENZC HIEN-5-YL)AMINO]METHYLENE]-5-(1,3-C AZOL-5-YL)-1,3-DIHYDRO-2H-INDOL-2-O E Find entries where: LS3
√		is present as a standalone ligand in 1 entries search
	Rotate Hydrogens Labels	Find related ligands: Similar Ligands (Stereospecific) Similar Ligands (including Stereoisomers) Similar Ligands (Quick Screen)
		Similar Ligands (Substructure Stereospecific) Similar Ligands (Substructure including Stereoisomers

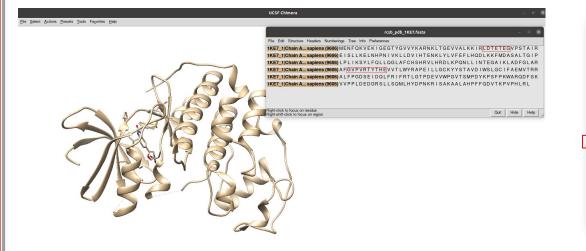
ID Chains	Name / Formula / InChl Key		
	Name / Formula / InChi Key	2D Diagram	3D Interactions
LS3 B [auth			Cligand Interaction
Query on LS3	5-YL)AMINO]METHYLENE}-5-(1,3-OXAZOL-5-YL)- 1.3-DIHYDRO-2H-INDOL-2-ONE	and -	

Chemical Component Summary		Chemical Detail
Name	3-{[(2,2-DIOXIDO-1,3-DIHYDRO-2-BENZOTHIEN-5-YL)A	Formal Charge
	MINO]METHYLENE]-5-(1,3-OXAZOL-5-YL)-1,3-DIHYDRO -2H-INDOL-2-ONE	Atom Count
Identifiers	3-[[(2,2-dioxo-1,3-dihydro-2-benzothiophen-	Chiral Atom Count
	5-yl]amino]methylidene]-5-(1,3-oxazol-5-yl)-1H-indol-2-one	Bond Count
Formula	C ₂₀ H ₁₅ N ₃ O ₄ S	Aromatic Bond Cou
Molecular Weight	393.42	
Туре	NON-POLYMER	
Isomeric SMILES	c1cc2c(cc1c3cnco3)C(=CNc4ccc5c(c4)CS(=O) (=O)C5)C(=O)N2	
InChi	InChI=1S/C20H15N3O4S /c24.20.17(7.22.15.3-1.13.9-28(25,26)10-14(13)5-15)16-6 -12(2-4-18(16)22.20)19-8-21-11-27-19 /h1-8_11.22H_9-10H2(H2.32,44)b17-7-	

- 4. Open Fasta and PDB in **Chimera**
 - a. Dock Prepare

Structure Editing -> Dock Prep

		Dock Prep					
Molecule 1ke7.pdl	es to prep: o (#0)			_			
☑ Delet	en molecules, do th ie solvent ie non-complexed io						
⊽ If alte	 ✓ selenomethionin ✓ bromo-UMP (5B ✓ methylselenyl-d 	e only highest occupancy e (MSE) to methionine (M U) to UMP (U) JMP (UMS) to UMP (U) CMP (CSL) to CMP (C)					
I Add I □ Add o	nplete side chains: nydrogens charges Mol2 file	Replace using Dunbrack	2010 rotar	mer libra	ry _	-	
A Smoo Deriv	alov, M.S., and D othed Backbone-D	Dunbrack 2010 rotamers s inbrack, R.L., Jr. (2011) ependent Rotamer Libra Kernel Density Estimat) ary for Pr	oteins	ns L		
			ОК	Cance	el	Hel	р



- 4. Open Fasta and PDB in Chimera
 - b. fill missing loops by Modeller

Tools -> Sequence -> Sequence

Sequence -> Structure -> Modeller (loops/refinement)

c. add Hs to selected model

		ent of Chosen M ms <mark>⊽ Choo</mark> se	in Model Panel 🔽 Hide others
Model	GA341	ZDOPE	
#1.1	1.00	-1.52	
		-1.53	
#1.3	1.00	-1.45	
#1.4	1.00	-1.55	
#1.5	1.00	-1.61	
#1.6	1.00	-1.60	select the model with
#1.7	1.00	-1.65	
#1.8	1.00	-1.52	the lowest zDOPE
#1.9	1.00	-1.50	
#1.10	1.00	-1.59	
#1.11	1.00	-1.48	
#1.12	1.00	-1.55	
#1.13	1.00	-1.60	
#1 14	1.00	-1,60	

Browse

28

1ke7.pdb (#0)

Close

Model Loops / Refine Structure

Chimera selection region

all missing structure

Loop modeling protocol: standard ____ Run Modeller using: web service Modeller license key:

Publications using Modeller results should cite:

Comparative protein modelling by satisfaction of spatial restraints.

Modeller Home Page

non-terminal missing structure

active region

Allow this many residues adjacent to missing regions to move: 1 Number of models to generate: 19

Temporary folder location (optional):

J. Mol. Biol. 234, 779-815, 1993.

Apply

A. Sali and T. L. Blundell.

OK

#1.15 1.00 -1.49

Model/remodel:

- 4. Open Fasta and PDB in Chimera
 - d. Set HIS protonated state

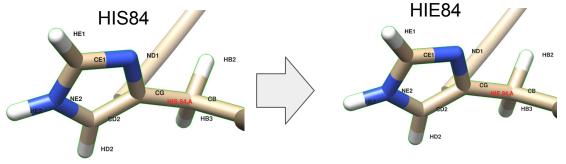
Tools -> General Controls -> Command line

Put in the Command line:

setattr r type HID :HIS@HD1,DD1,TD1,HND setattr r type HIP :HID@HE2,DE2,TE2 setattr r type HIE :HIS@HE2 https://ambermd.org/Questions/HIS.html

AMBER Histidine residues

Histidine (HIS in normal pdb files) is really one of three possible residues:


HID: Histidine with hydrogen on the delta nitrogen

HIE: Histidine with hydrogen on the epsilon nitrogen

HIP: Histidine with hydrogens on both nitrogens; this is positively charged.

It is up to the user to inspect the environment of each histidine and identify the type that is appropriate.

check visually active site

Chimera preparation

- 4. Open Fasta and PDB in Chimera
 - e. Save protein only (plus ions, metals) and ligand only in *pdb* formats separately

Select -> Residue -> Ligand_id

File -> Save PDB -> Save selected only

ligand.pdb

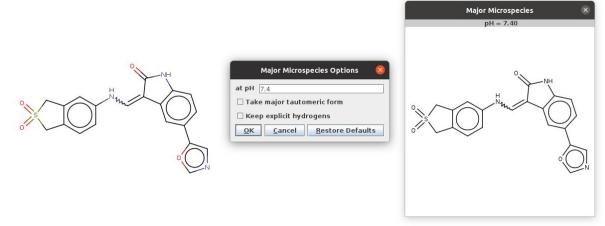
Select -> Invert (all models)

File -> Save PDB -> Save selected only

protein_prepared.pdb

	any/phd/study/2022/PhD_lecture	-
QSAR/	MD/ MD_tut/	1ke7.pdb 1ke7_full.pdb 1ke7_full_all.pdb
cture/ 102022/ 35/		1ke7_start.pdb
≤l File name:[ligand.pdb] File type: PDB [.pdb](Add .pdb suffix if none given	er [
ile name: ligand.pdb	New fold	er
File name: ligand.pdb File type: PDB [.pdb]	New fold	er
File name: ligand.pdb	New fold	9r
File name; <mark>ligand.pdt</mark> File type: PDB [.pdb] Save models:	New fold	9r
File name: [ligand.pdb] File type: PDB [.pdb] Tke7_full_all.pdb (Save models: □ Save displayed atoms only	New fold #0)	9f

Ligand preparation


5. Save protonated smiles (pH 7.4) by Marvin into ligand_74.smi

Open Marvin Sketch

File -> Open -> ligand.smi

Calculations -> Protonation -> Major Microspecies -> 7.4 -> Ctrl+L (copy as Smiles)

Save to ligand_74.smi

Ligand preparation

6. Transform pdb of ligand into mol format (add bonds information from smiles)

Script <u>https://github.com/ci-lab-cz/md-scripts/blob/master/scripts/pdb2mol.py</u> Run in Bash/Shell:

python md-scripts/scripts/pdb2mol.py -i ligand.pdb --smiles ligand_74.smi -o ligand.mol

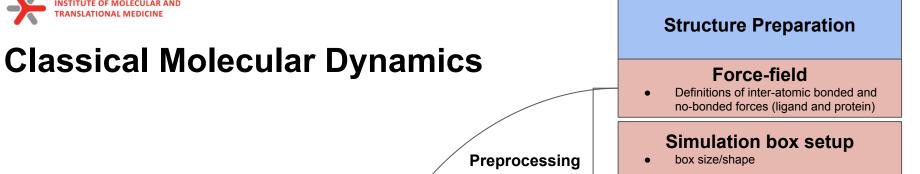
Protein Ligand preparation

Input Files for MD:

protein_prepared.pdb

- no missing non-terminal atoms/residues
- removed non-protein residues
- added all hydrogens
- set HID/HIE/HIP states

ligand.mol


- protonated at 7.4 pH
- added all hydrogens

https://github.com/ci-lab-cz/md-scripts

FAST. FLEXIBLE. FREE.

GROMACS

Solvate system

add HOH molecules

Neutralize system

add NA+/CL- ions .

100 ps

.

Pre-simulation

steps

to ensure that the system has no steric clashes or inappropriate geometry

NVT and NPT equilibration

1000 ps

equilibrate the solvent and ions around the protein

Product Simulation

Analysis

Practice: force fields

Prepare the protein topology with pdb2gmx

gmx pdb2gmx

Synopsis

gmx pdb2gmx [-f [<.gro/.g96/...>]] [-o [<.gro/.g96/...>]] [-p [<.top>]]
[-i [<.itp>]] [-n [<.ndx>]] [-q [<.gro/.g96/...>]]
[-chainsep <enum>] [-merge <enum>] [-ff <string>]
[-water <enum>] [-[no]inter] [-[no]ss] [-[no]ter]
[-[no]lys] [-[no]arg] [-[no]asp] [-[no]glu] [-[no]gln]
[-[no]his] [-angle <real>] [-lost <real>] [-[no]una]
[-[no]ignh] [-[no]missing] [-[no]v] [-posrefc <real>]
[-vsite <enum>] [-[no]chargegrp] [-[no]cmap] [-[no]renum] [-[no]rtpres]

Description

gmx pdb2gmx reads a .pdb (or .gro) file, reads some database files, adds hydrogens to the molecules and generates coordinates in GROMACS (GROMOS), or optionally .pdb, format and a topology in GROMACS format. These files can subsequently be processed to generate a run input file.

gmx pdb2gmx -f protein.pdb -o protein.gro -water tip3p -ignh <<< "AMBER99SB-ILDN"

New files:

protein.gro: a molecular structure in Gromos87 format. topol.top: molecular topology posre.itp: position restraints

https://manual.gromacs.org/documentation/current/onlinehelp/gmx-pdb2gmx.html

Practice: force fields

Prepare the protein topology with pdb2gmx

gmx pdb2gmx

Synopsis

gmx pdb2gmx [-f [<.gro/.g96/...>]] [-o [<.gro/.g96/...>]] [-p [<.top>]]
[-i [<.itp>]] [-n [<.ndx>]] [-q [<.gro/.g96/...>]]
[-chainsep <enum>] [-merge <enum>] [-ff <string>]
[-water <enum>] [-[no]inter] [-[no]ss] [-[no]ter]
[-[no]lys] [-[no]arg] [-[no]asp] [-[no]glu] [-[no]gln]
[-[no]his] [-angle <real>] [-dist <real>] [-[no]una]
[-[no]igh] [-[no]missing] [-[no]v] [-posrefc <real>]
[-vsite <enum>] [-[no]heavyh] [-[no]deuterate]
[-[no]chargegrp] [-[no]cmap] [-[no]renum] [-[no]rtpres]

pdb2gmx does not work on ligand

Description

gmx pdb2gmx reads a .pdb (or .gro) file, reads some database files, adds hydrogens to the molecules and generates coordinates in GROMACS (GROMOS), or optionally .pdb, format and a topology in GROMACS format. These files can subsequently be processed to generate a run input file.

gmx pdb2gmx -f protein.pdb -o protein.gro -water tip3p -ignh <<< "AMBER99SB-ILDN"

https://manual.gromacs.org/documentation/current/onlinehelp/gmx-pdb2gmx.html

Automation tools for ligand topology

AMBER	<u>Antechamber</u> <u>acpype</u>	Parametrizes molecules using GAFF A Python interface to Antechamber, writes GROMACS topologies
CHARMM	<u>CGenFF</u>	The official CHARMM General Force Field server
GROMOS87/ GROMOS96	<u>PRODRG 2.5</u> <u>ATB</u>	An automated server for topology generation A newer server for topology generation, uses GROMOS96 54A7
OPLS-AA	<u>Topolbuild</u>	Converts a Tripos .mol2 file into a topology
	<u>TopolGen</u>	A Perl script to convert an all-atom .pdb file to a topology
	<u>LigParGen</u>	A server from the Jorgensen group to produce OPLS topologies

Ligand Force fields

Prepare the ligand topology using external tools

antechamber -i ligand.pdb -fi pdb -o lig.mol2 -fo mol2 -c bcc -pf y -s 2 parmchk2 -i lig.mol2 -f mol2 -o lig.frcmod python pmed_amb2gmx.py -p lig.prmtop -x lig.inpcrd -o UNL

Build the topology for the protein-ligand system Insert a line that says #include lig.itp" into topol.top after the position restraint file is included Make adjustments is in the [molecules] directive

New files:

lig.mol2 - file of ligand with charges and bonds *lig.frcmod* - Parameter modification file *posre_ligand.itp* - positional restraints *ligand.gro* - ligand in Gromos87 format *ligand.inpcrd* - Amber coordinate file of ligand *ligand.prmtop* - Amber topology file *ligand.top* - Gromacs topology file

Changed files: topol.top

Solvation

To perform simulation we should add water molecules to mimic real environment.

There are two steps to defining the box and filling it with solvent:

- 1) Define the box dimensions using the editconf module
- 2) Fill the box with water using the solvate module.

We will use a simple cubic box as the unit cell.

First define the box using editconf:

gmx editconf -f protein.gro -o protein_newbox.gro -c -d 1.0 -bt cubic

a solute-box distance of 1.0 nm will mean that there are at least 2.0 nm between any two periodic images of a protein. This distance should be sufficient for just about any cutoff scheme commonly used in simulations.

New files: protein_newbox.gro: protein+box system

Solvation

To perform simulation we should add water molecules to mimic real environment.

On the previous step we have defined a box, then we should fill it with solvent (water). Solvation is accomplished using solvate command:

gmx solvate -cp protein_newbox.gro -cs spc216.gro -o protein_solv.gro -p topol.top

- -cp the configuration of the protein (-cp)
- -cs the configuration of the solvent (-cs)

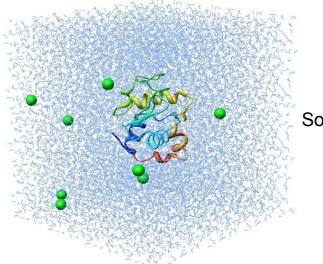
spc216.gro is a generic equilibrated 3-point solvent model (suitable for SPC, SPC/E, or TIP3P water, since they are all three-point water models)

New files: protein_solv.gro: protein + solvent system Changed files: topol.top

Adding ions

We need to add ions of CL- or NA+ to neutralize our protein:

gmx grompp -f ions.mdp -c protein_solv.gro -p topol.top -o ions.tpr


gmx genion -s ions.tpr -o protein_solv_ions.gro -p topol.top -pname NA -nname CL -neutral

New files:

protein_solv_ions.gro: protein + solvent +
ions system

ions.tpr: portable binary run input file. This file contains the starting structure, the molecular topology and all the simulation parameters.

Changed files: topol.top

Solvated protein with ions

Energy minimization

Before we can begin dynamics, we must ensure that the system has no steric clashes or inappropriate geometry (equilibrium state). The structure is relaxed through a process called energy minimization (EM).

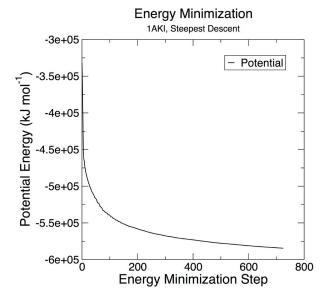
Prepare files:

gmx grompp -f minim.mdp -c protein_solv_ions.gro -p topol.top -o em.tpr

Run the minimization:

gmx mdrun -v -deffnm em -s em.tpr

New files: *em.log: ASCII-text log file of the EM process em.edr: Binary energy file em.tpr: Contains the starting structure, the molecular topology and all the simulation parameters. em.trr: Binary full-precision trajectory em.gro: Energy-minimized structure*



Energy minimization

How to do an analysis:

The em.edr file contains all of the energy terms that GROMACS collects during EM. You can analyze any .edr file using the GROMACS energy module:

gmx energy -f em.edr -o potential.xvg << "Potential"

43

Equilibration

Energy Minimization ensured that we have a reasonable starting structure, but to begin real dynamics, we must equilibrate the solvent and ions around the protein.

Why do we need equilibration?

If we were to attempt unrestrained dynamics at this point, the system may collapse.

<u>The reason is that the solvent is mostly optimized within itself, and not necessarily with the solute.</u> It needs to be brought to the temperature we wish to simulate and establish the proper orientation around the solute (the protein). After we achieved the correct temperature (based on kinetic energies), we will apply pressure to the system until it reaches the proper density.

Controlling the system

Thermodynamic system has a number of state variables which describe its macroscopic state such as

• Particle number, volume, temperature, pressure, total energy

They are not all independent, but connected by equations of state

Example: Ideal gas of non-interacting point particles

$$p = p(V,T) \qquad p \cdot V = N \cdot k_B \cdot T$$

$$E = E(V,T) \qquad p = S k_B T$$

$$E = \frac{3}{2} N k_B T$$

https://web.mst.edu/~vojtat/class_5403/MolecularDynamics.pdf

Restrain the system

To equilibrate the solvent and ions around the protein we need to apply position restraints on the heavy atoms of the protein.

The purpose of **posre.itp** is to apply a position restraining force on the heavy atoms of the protein (anything that is not a hydrogen). Movement is permitted, but only after overcoming a substantial energy penalty.

NVT equilibration

Canonical ensemble (NVT)

- Particle number N
- Volume V
- Temperature T

· External parameters

- Total energy E
- Pressure P

Observables to be calculated

In MD simulation: some state variables are external parameters, others are observables to be calculated

Requires a **thermostat**, an algorithm that adds and removes energy to keep the temperature constant

Velocity rescaling based on equipartition theorem

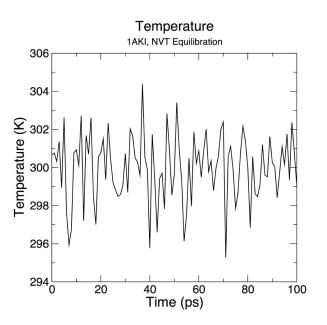
$$\langle \overline{f}_{kin} \rangle = \frac{1}{2} \sum_{\lambda} m_{\lambda} \langle \overline{V_{\lambda}}^{\prime L} \rangle = \frac{3}{2} N k_{B} T$$

Berendsen thermostat, Anderson thermostat

https://web.mst.edu/~vojtat/class_5403/MolecularDynamics.pdf

NVT equilibration

to run NVT equiibration:


gmx grompp -f nvt.mdp -c em.gro -r em.gro -p topol.top -o nvt.tpr

gmx mdrun -deffnm nvt -s nvt.tpr

An analysis:

gmx energy -f nvt.edr -o temperature.xvg <<< "Temperature"

New files: nvt.log: ASCII-text log file of the equilibration process nvt.edr: Binary energy file nvt.trr: Binary full-precision trajectory nvt.gro: NVT-minimized structure

NPT equilibration

Isothermal-isobaric ensemble (NPT)

- Particle number N •
- Pressure P
- Temperature T
- Total energy E
 Volume V
 Observables to be calculated

Requires a **barostat** in addition to the thermostat, an algorithm that changes volume to keep the pressure constant

(External parameters

https://web.mst.edu/~vojtat/class 5403/MolecularDynamics.pdf

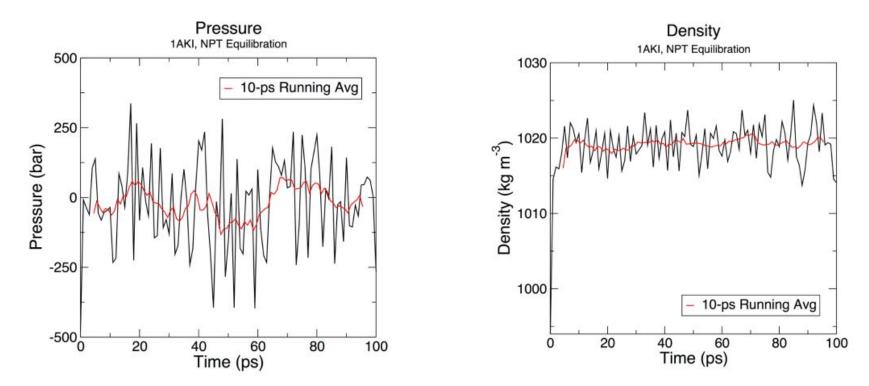
NPT equilibration

Note that we are now including the -t flag to include the checkpoint file from the NVT equilibration

The coordinate file (-c) is the final output of the NVT simulation.

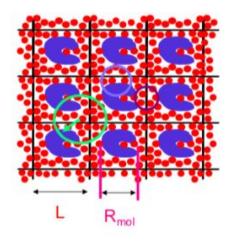
to run NPT equiibration:

gmx grompp -f npt.mdp -c nvt.gro -r nvt.gro -t nvt.cpt -p topol.top -o npt.tpr gmx mdrun -deffnm npt -s npt.tpr


An analysis:

gmx energy -f npt.edr -o pressure.xvg <<< "Pressure" gmx energy -f npt.edr -o density.xvg <<< "Density"

New files: *nvt.log:* ASCII-text log file of the equilibration process *nvt.edr:* Binary energy file *nvt.trr:* Binary full-precision trajectory *nvt.gro:* NVT-minimized structure


NPT equilibration

In our tool we run 1000 ps NPT equilibration by default

Periodic Boundary Conditions

· Cubic:

Required (no atom sees another one twice): $L > 2R_{o}$ $R_{o} < \frac{1}{2}L$ Preferred (protein does not see a copy of itself)

 $L > R_c + R_{mol}$ $R_c < L - R_{mol}$

Even better (no solvent sees two proteins)

$$L > 2R_c + R_{mol}$$
 $R_c < \frac{1}{2}(L_{cnu})$

mbe

- Periodic boundary conditions (PBCs) are a set of boundary conditions which are often chosen for approximating a large (infinite) system by using a small part called a unit cell.
- PBCs are often used in computer simulations and mathematical models.
- The topology of two-dimensional PBC is equal to that of a world map of some video games; the geometry of the unit cell satisfies perfect two-dimensional tiling, and when an object passes through one side of the unit cell, it reappears on the opposite side with the same velocity.

Production MD

the system is now well-equilibrated at the desired temperature and pressure. We are now ready to release the position restraints and run production MD

We will run MD simulation

gmx grompp -f md.mdp -c npt.gro -t npt.cpt -p topol.top -o md_0_1.tpr

gmx mdrun -deffnm md_0_1 -s md_0_1.tpr

New files:

md_0_1.tpr: portable binary run input file. It contains the starting structure of the simulation, the molecular topology and all the simulation parameters. md_0_1.log: ASCII-text log file of the equilibration process md_0_1.cpt: portable checkpoint file. The complete state of the simulation is stored in the checkpoint file, including extended thermostat/barostat variables, random number states and NMR time averaged data md_0_1.edr: Binary energy file md_0_1.xtc: Binary full-precision trajectory md_0_1.gro: starting structure of the simulation in

 $t + \Delta t$

 $x(t + \Delta t)$

 $v(t + \Delta)$

Molecular Dynamics

I.Assign velocities to all atoms

2. Calculate forces on all atoms

3. Use Newton's second law to calculate acceleration on each atom F=ma

- 4. Calculate velocities for the next timestep
- 5. Use change of velocities to get coordinates for next timestep
 6. Go to step 2.

Analysis of calculated MD simulation

Remove PBC:

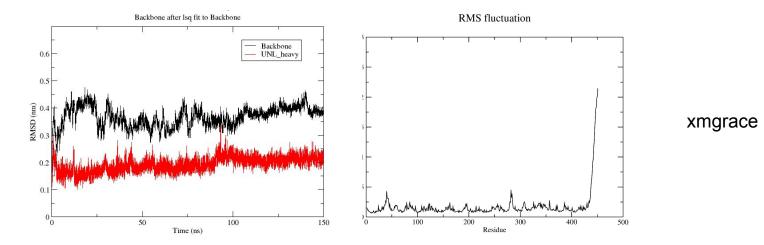
gmx trjconv -s md_out.tpr -f md_out.xtc -pbc nojump -o md_out_noj_noPBC.xtc <<< "System"

Center system:

gmx trjconv -s md_out.tpr -f md_out_noj_noPBC.xtc -o md_centermolsnoPBC.xtc -pbc mol -center -n index.ndx <<< "Protein_UNL System"

Alignment of all frames (Remove rotations and translations):

gmx trjconv -s md_out.tpr -f md_centermolsnoPBC.xtc -fit rot+trans -o md_fit.xtc -n index.ndx <<< "Protein_UNL System"


Analysis of calculated MD simulation

RMSD:

gmx rms -s md_0_1.tpr -f md_0_1_noPBC.xtc -o rmsd.xvg -tu ns

RMSF:

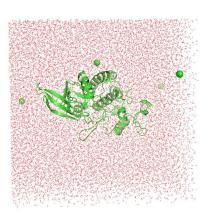
gmx rmsf -s md_0_1.tpr -f md_0_1_noPBC.xtc -o rmsf.xvg -oq rmsf.pdb -res

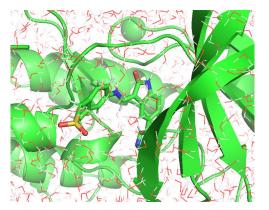
MD simulation by one command:

Output files:

md_out.tpr: portable binary run input file. It contains the starting structure of the simulation, the molecular topology and all the simulation parameters.
md_out.log: ASCII-text log file of the equilibration process
md_out.cpt: portable checkpoint file. The complete state of the simulation is stored in the checkpoint file, including extended thermostat/barostat variables, random number states and NMR time averaged data
md_out.edr: Binary energy file
md_out.xtc: Binary full-precision trajectory
md_out.gro: starting structure of the simulation

<u>md_fit.xtc</u>: fitted trajectory (removed PBC and the rotation and translation, centered) to use for rmsd and energy calculation analysis md_short_forcheck.xtc: fitted short trajectory (each 100 step is skipped) frame.pdb: a frame from the trajectory to provide topology


MD trajectory analysis files:


rmsd.xvg - rmsd of Backbone of protein rmsd_UNL.xvg - rmsd of the heavy atoms of ligand gyrate.xvg - radius of gyration of the protein rmsf.xvg - root mean square fluctuation of each amino acids

Check your own MD trajectory

frame.pdb - a frame from the trajectory to provide topology *md_fit.xtc* - your fitted MD trajectory

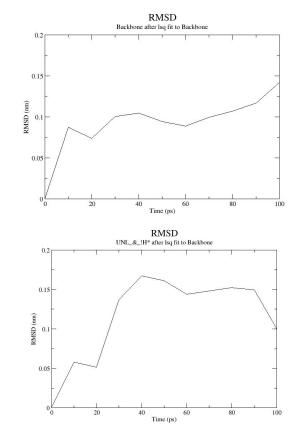
Analysis of calculated MD simulation

working dir: /home/user/MD_tutorial

• =	(base) [antkonenkoi@login4.karoitna ligand_@ins]\$ ls								
	01_complex_preparation_md.pbs.e1627033		#index.ndx.2#		mdout.mdp			<pre>rmsd_UNL_xtal.xvg</pre>	sqm.out
	01_complex_preparation_md.pbs.o1627033	em.log			<pre>md_out_noj_noPBC.xtc</pre>				sqm.pdb
Run on it4i cluster:	02_pbsa.pbs.e1627062	em.tpr	#index.ndx.4#		md_out.tpr			rmsd_xtal.png	temperature.png
	02_pbsa.pbs.o1627062	em.trr	#index.ndx.5#		md_out.xtc			rmsd_xtal.xvg	temperature.xvg
Visualize plots by xmgrace:	COMPACT_MMXSA_RESULTS.mmxsa	FINAL_RESULTS_MMPBSA.dat			<pre>md_short_forcheck.xtc</pre>			rmsd.xvg	tleap.in
VISUALIZE PIOLS BY XILIGIACE.	complex.gro	frame.pdb		md_fit.xtc				rmsf.pdb	tmp.gro
	COM.prmtop	gmx_MMPBSA.log	ligand.frcmod		mmpbsa.in			rmsf.png	topol.top
module load grace	COM_traj_0.xtc			md_out.cpt	newbox.gro			rmsf.xvg	<pre>#topol.top.1#</pre>
	density.png	gyrate.xvg	ligand.inpcrd		npt.cpt				<pre>#topol.top.2#</pre>
ad ligand Olya	density.xvg	index.ndx		md_out.gro	npt.edr			solv_ions.gro	
cd ligand_01ns/	em.edr	#index.ndx.1#	ligand.lib	md out.log	npt.gro	nvt.trr	rmsd UNL xtal.png	sqm.in	

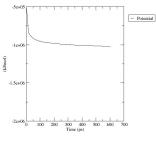
cd ligand 01ns/ for i in *.xvg; do gracebat -hdevice PNG \$i;done

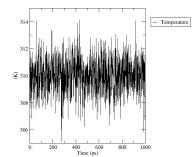
Run analysis on your own computer:


scp -I path/to/your/private/key dd-23-13-XX@login1.karolina.it4i.cz:md_tutorial/ligand_01ns/{frame.pdb,md_fit.xtc, *.png}.

Analysis of the calculated MD simulation

Created by:	s created Mon Nov 28 18:33:21 2022
	GROMACS - gmx rms, 2021.4-EasyBuild-4.5.1-PLUMED-2.7.3 (-:
Executable:	/apps/all/GROMACS/2021.4-foss-2020b-PLUMED-2.7.3/bin/gmx
Data prefix:	
Working dir:	
Command line	
gmx rms -s	md_out.tpr -f md_fit.xtc -o rmsd.xvg -n index.ndx -tu ps
gmx rms is p	art of G R O M A C S:
God Rules Ov	er Mankind, Animals, Cosmos and Such
title "RM	50"
	bel "Time (ps)"
	bel "RMSD (nm)"
TYPE XV	
subtitle "Ba	ckbone after lsg fit to Backbone"
0.0000000	0.0004955
10.0000000	0.0872569
20.0000000	0.0738152
	0.1004452
40.0000000	0.1048534
50.0000000	0.0945487
60.0000000	0.0887801
70.0000000	
80.0000000 90.0000000	0.1069565 0.1168087
100.0000000	
(
	was created Mon Nov 28 18:33:21 2022
Created by:	
) GROMACS - gmx rms, 2021.4-EasyBuild-4.5.1-PLUMED-2.7.3 (-:
	(/-)) (COOMACE (2024 A E 2020) DUMED 2 7 2 (bi- /
Executable	
Executable: Data prefix	<pre>c: /apps/all/GROMACS/2021.4-foss-2020b-PLUMED-2.7.3</pre>
Executable Data prefix Working dir	<pre>x: /apps/all/GROMACS/2021.4-foss-2020b-PLUMED-2.7.3</pre>
Executable: Data prefix Working dir Command lir	<pre>(: /apps/all/GROMACS/2021.4-foss-2020b-PLUMED-2.7.3 : /mnt/proj1/dd-22-84/MD_tutorial/ligand_0ins e:</pre>
Executable: Data prefix Working dir Command lir gmx rms	<pre>(: /apps/all/GROMACS/2021.4-foss-2020b-PLUMED-2.7.3 : /mnt/proj1/dd-22-84/MD_tutorial/ligand_0ins ee: s md_out.tpr -f md_fit.xtc -o rmsd_UNL.xvg -n index.ndx -tu ps</pre>
Executable: Data prefix Working dir Command lir gmx rms	<pre>(: /apps/all/GROMACS/2021.4-foss-2020b-PLUMED-2.7.3 : /mnt/proj1/dd-22-84/MD_tutorial/ligand_0ins e:</pre>
Executable: Data prefix Working dir Command lir gmx rms is	<pre>(: /apps/all/GROMACS/2021.4-foss-2020b-PLUMED-2.7.3 : /mnt/proj1/dd-22-84/MD_tutorlal/ligand_0ins e: -s md_out.tpr -f md_ftt.xtc -o rmsd_UNL.xvg -n index.ndx -tu ps part of G R O M A C S:</pre>
Executable: Data prefix Working dir Command lir gmx rms is	<pre>(: /apps/all/GROMACS/2021.4-foss-2020b-PLUMED-2.7.3 : /mnt/proj1/dd-22-84/MD_tutorial/ligand_0ins ee: s md_out.tpr -f md_fit.xtc -o rmsd_UNL.xvg -n index.ndx -tu ps</pre>
Executable: Data prefty Working dir Command lir gmx rms gmx rms is God Rules (<pre>(: /apps/all/GROMACS/2021.4-foss-2020b-PLUMED-2.7.3 : /mnt/proj1/dd-22-84/MD_tutorlal/ligand_0ins e: -s md_out.tpr -f md_ftt.xtc -o rmsd_UNL.xvg -n index.ndx -tu ps part of G R O M A C S:</pre>
Executable: Data prefix Working dir Command lir gmx rms - gmx rms is God Rules C title "F	(: /apps/all/GROMACS/2021.4-FOSS-2020b-PLUMED-2.7.3 : /mt/proj1/dd-22-84/ND_tutorlal/ligand_01ns ee: s md_out.tpr -f md_fit.xtc -o rmsd_UNL.xvg -n index.ndx -tu ps part of G R 0 M A C S: Dver Mankind, Animals, Cosmos and Such
Executable: Data prefty Working dir Command lir gmx rms gmx rms is God Rules (title "F	(: /apps/all/GROMACS/2021.4-FOSS-2020b-PLUMED-2.7.3 : /mt/proj1/dd-22-84/ND_tutorlal/ligand_01ns ee: s md_out.tpr -f md_fit.xtc -o rmsd_UNL.xvg -n index.ndx -tu ps part of G R 0 M A C S: Dver Mankind, Animals, Cosmos and Such
Executable Data prefix Working dir Command lir gmx rms - gmx rms is God Rules (title "F xaxis 1	t: /apps/all/GROMACS/2021.4-foss-2020b-PLUMED-2.7.3 ' ' : /mnt/proj1/dd-22-84/MD_tutorial/ligand_01ns e: s md_out.tpr -f md_fit.xtc -o rmsd_UNL.xvg -n index.ndx -tu ps part of G R O M A C S: Over Mankind, Animals, Cosmos and Such RMSD"
Executable: Data prefix Working dir Command lir gmx rms is God Rules (title "F xaxis 1 yaxis 1	c: /apps/all/GROWACS/2021.4-foss-2020b-PLUMED-2.7.3΄ '´´ : /mnt/proj1/dd-22-84/MD_tutorial/ligand_01ns e: s md_out.tpr -f md_ftt.xtc -o rmsd_UNL.xvg -n index.ndx -tu ps part of G R O M A ⊂ S: Dver Mankind, Animals, Cosmos and Such RMSD" abel Time (ps)"
Executable: Data prefix Working dir Command lir gmx rms is gmx rms is God Rules C title "F xaxis 1 yaxis 1 yaxis 1	c: /apps/all/GROWACS/2021.4-foss-2020b-PLUMED-2.7.3΄ '´´ : /mnt/proj1/dd-22-84/MD_tutorial/ligand_01ns e: s md_out.tpr -f md_ftt.xtc -o rmsd_UNL.xvg -n index.ndx -tu ps part of G R O M A ⊂ S: Dver Mankind, Animals, Cosmos and Such RMSD" abel Time (ps)"
Executable: Data prefix Working dir Command lir gmx rms is gmx rms is God Rules C title "F xaxis 1 yaxis 1 yaxis 1	<pre>c: /apps/all/GROWACS/2021.4-foss-2020b-PLUMED-2.7.3 '</pre>
Executable: Data prefix Working din Command lin gmx rms is God Rules (title "F Xaxis 1 Xaxis 1 YYPE xy subtitle "U	c: /apps/all/GROWACS/2021.4-foss-2020b-PLUMED-2.7.3 [°] : /mnt/proj1/dd-22-84/MD_tutorial/ligand_01ns e: s md_out.tpr -f md_ftt.xtc -o rmsd_UNL.xvg -n index.ndx -tu ps part of G R O M A C S: over Mankind, Animals, Cosmos and Such RMSD [°] .abel "RMSD (nm)"


0.0000000	0.0005219
10.0000000	0.0578194
20.0000000	0.0515443
30.000000	0.1366709
40.0000000	0.1673483
50.0000000	0.1613055
60.0000000	0.1436562
70.0000000	0.1480425
80.000000	0.1522363
90.000000	0.1496438
100.0000000	0.0998629


GROMACS Energies

Time (ps)

GROMACS Energies

MMPBSA / MMGBSA

End-state free energy calculations with GROMACS files

GNU mano 2.3.1 File: md-scripts/scripts/mmpbsa.in Sample input file for PB/GB calculation #This input file is meant to show only that gmx_MMPBSA works. Although, we tried to use the input files as recommended in the #Amber manual, some parameters have been changed to perform more expensive calculations in a reasonable amount of time. Feel free to change the parameters #according to what is better for your system. &general sys_name="PB_GB_IE", #startframe=1, interval=25, verbose=2, PBRadii=3, startframe=1, interval=1, verbose=2, PBRadii=3, startframe=1, interval=1, verbose=2, remperature=310 / &gb igb=5, saltcon=0.150, / &pb istrng=0.15, fillratio=4.0, radiopt=0, indi=1, exdi=80.0

1) You can change **ie_segment** from 25 to 100

nano /mnt/proj2/dd-23-13/md-scripts/scripts/mmpbsa.in

working dir: /home/user/md_tutorial

2) run script for energy calculation:

qsub -A DD-22-13 -v tpr=md_out.tpr,xtc=md_fit.xtc,script_path=/mnt/proj2/dd-23-13/md-scripts/scripts/,wdir=ligand_01ns/,NP=11 /mnt/proj2/dd-23-13/md-scripts/Protein-Ligand_MD_PBGBSA/02_pbsa.pbs

3) After calculation will be finished

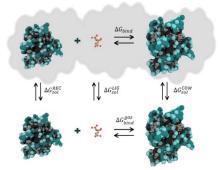
cat ligand_01ns/FINAL_RESULTS_MMPBSA.dat

For multiple molecules you can run other script to collect MM(P/G)BSA energies from all directories

wdir=\$(pwd)/md_tutorial bash 03_sum_result_pbsa.pbs

Sum_Result_GENERALIZED_BORN.csv Sum_Result_IE.csv Sum_Result_POISSON_BOLTZMANN.csv

(miniconda3)[anikonenko1@login2.karolina dd-23-13]\$ cat md_tutorial/Sum_Result_*
fname,deltaG,SD
1ke5_ligand,-30.6897,4.1740
1ke6_ligand,-23.3582,2.7462
1ke7_ligand,-19.3363,4.8091
fname,IE,SD,SEM
1ke5_ligand,3.8787,2.5746,1.4865
1ke6_ligand,9.3748,0.0504,0.0291
1ke7_ligand,12.6552,0.0505,0.0291


What can be done by MD

- to estimate binding affinity of protein-ligand complexes
- Molecular mechanics Poisson–Boltzmann surface area (MM/PBSA)
- Molecular mechanics generalized Born surface area (MM/GBSA)

$$\Delta G_{\rm bind} = G_{\rm RL} - G_{\rm R} - G_{\rm L} \tag{4}$$

can be decomposed into contributions of different interactions and expressed as (58)

$$\Delta G_{\text{bind}} = \Delta H - T\Delta S = \Delta E_{\text{MM}} + \Delta G_{\text{sol}} - T\Delta S \tag{5}$$

in which

$$\Delta E_{\rm MM} = \Delta E_{\rm int} + \Delta E_{\rm ele} + \Delta E_{\rm vdW} \tag{6}$$

$$\Delta G_{\rm sol} = \Delta G_{\rm PB/GB} + \Delta G_{\rm SA} \tag{7}$$

$$\Delta G_{\rm SA} = \gamma \cdot {\rm SASA} + b \tag{8}$$

64

Valdés-Tresanco, M.S., Valdés-Tresanco, M.E., Valiente, P.A. and Moreno E. *gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS.* Journal of Chemical Theory and Computation, 2021 17 (10), 6281-6291. <u>https://pubs.acs.org/doi/10.1021/acs.jctc.1c00645</u>. *MMPBSA.py:* An Efficient Program for End-State Free Energy Calculations Bill R. Miller III, T. Dwight McGee Jr., Jason M. Swails, Nadine Homeyer, Holger Gohlke, and Adrian E. Roitberg Journal of Chemical Theory and Computation 2012 8 (9), 3314-3321 DOI: 10.1021/ct300418h

What can be done by MD

 to estimate binding affinity of protein-ligand complexes

Total G_{Binding}=

- Gas-phase molecular mechanics energy ∆E_{MM}:
 - Changes in the internal energies dihedral energies)
 - electrostatic energies ΔE_{ele}
 - van der Waals energies ΔE_{vd}
- sum of the electrostatic solvation energy G_{sol}
- **The polar contribution** is calculated using either the PB or GB model (\triangle GPB/GB). Where the GB method gives an analytical expression for the polar solvation energy and is thus much faster than the PB method.
- nonpolar energy is usually estimated using the solvent-accessible surface area (SASA)
- The change in **conformational entropy** –**TΔS**
 - is usually calculated by normal-mode analysis (or Interaction entropy) on a set of conformational snapshots taken from MD simulations.

In the MM/PBSA or MM/GBSA approach, the free energy for binding of the ligand (L) to the protein receptor (R) to form the complex (RL),

$$\Delta G_{\rm bind} = G_{\rm RL} - G_{\rm R} - G_{\rm L} \tag{4}$$

can be decomposed into contributions of different interactions and expressed as (58)

in which

$$\Delta G_{\rm bind} = \Delta H - T\Delta S = \Delta E_{\rm MM} + \Delta G_{\rm sol} - T\Delta S \tag{5}$$

$$\Delta E_{\rm MM} = \Delta E_{\rm int} + \Delta E_{\rm ele} + \Delta E_{\rm vdW} \tag{6}$$

$$\Delta G_{\rm sol} = \Delta G_{\rm PB/GB} + \Delta G_{\rm SA} \tag{7}$$

$$\Delta G_{\rm SA} = \gamma \cdot {\rm SASA} + b \tag{8}$$

65

EDIS GGAS GSOL TOTA

Liga Ener BOND ANGL DIHE VDWA EEL 1-4 EPB ENPO EDIS

GGAS GSOL

TOTA

Delt Ener ΔΒΟΝ ΔΑΝΟ ΔΟΙΗ ΔVDW ΔΕΕL

∆1-4

Δ1-4

ΔΕΡΒ

∆GGAS

ΔGSOLV

ΔΤΟΤΑΙ

AENPOLAR

AEDISPER

ISPER	-1407.08	18.20	18.20	5.49	5.49							
AS	-3184.42	101.56	74.86	30.62	22.57							
DLV	-2452.28	57.05	52.79	17.20	15.92							
TAL	-5636.70	116.49	31.95	35.12	9.63							
and:												
ergy Component	Average	SD(Prop.)	SD	SEM(Prop.)	SEM							
ND	11.40	2.28	2.28	0.69	0.69							
SLE	45.46	2.79	2.79	0.84	0.84							
HED	23.24	2.06	2.06	0.62	0.62							
AALS	-3.31	0.62	0.62	0.19	0.19							
	95.11	0.99	0.99	0.30	0.30			יוואכ	766			
4 VDW	7.97	0.54	0.54	0.16	0.16	GE	INEF	KALI	ᆂᄔ) BOF	NIN.	
¥ EEL	-225.15	1.58	1.58	0.48	0.48			<u> </u>				
3	-34.82	0.85	0.85	0.26	0.26	PO	188	ON F	RUL	TZMA		
POLAR	40.24	0.17	0.17	0.05	0.05		100					
ISPER	-42.92	0.18	0.18	0.06	0.06							
AS	-45.28	4.62	3.37	1.39	761.00	1200010	a casa na s		5 6 10 5 5			
DLV	-37.50	0.89	0.95	0.27		[anικο					D_tutorial	.]\$ grep 'G binding =' ligand_01ns/FINAL_RESULTS_MMPBSA.dat
TAL	-82.78	4.71	2.96	1.42	ΔG bin ΔG bin			6.09 +, 4.51 +,		4.58 6.93		
lta (Complex - Re	eceptor - Ligar	nd):										
ergy Component	Average	SD(Prop.)	SD	SEM(Prop.)	SEM							
OND	-0.00	2.08	0.00	0.63	0.00							
IGLE	-0.00	2.09	0.00	0.63	0.00							MMPBSA Energy and MMGBSA
THED	0.00	1.45	0.00	0.44	0.00							
DWAALS	-46.46	0.60	2.50	0.18	0.75							Energy cannot be compared within the
	-41.29	0.26	7.77	0.08	2.34							Energy cannot be compared within the
-4 VDW	-0.00	0.30	0.00	0.09	0.00							different methods. Dut very semirent
-4 EEL	0.00	1.33	0.00	0.40	0.00							<u>different methods.</u> But you can rank
РВ	64.17	0.71	4.26	0.22	1.28							
ID OL LO												

Using Interaction Entropy Approximation:

-32.09

57.51

-87.75

89.59

1.84

∆G binding = 4.51 +/- 6.93

0.07

0.07

0.66

0.72

0.98

0.75

0.85

7.62

4.38

6.93

0.02

0.02

0.20

0.22

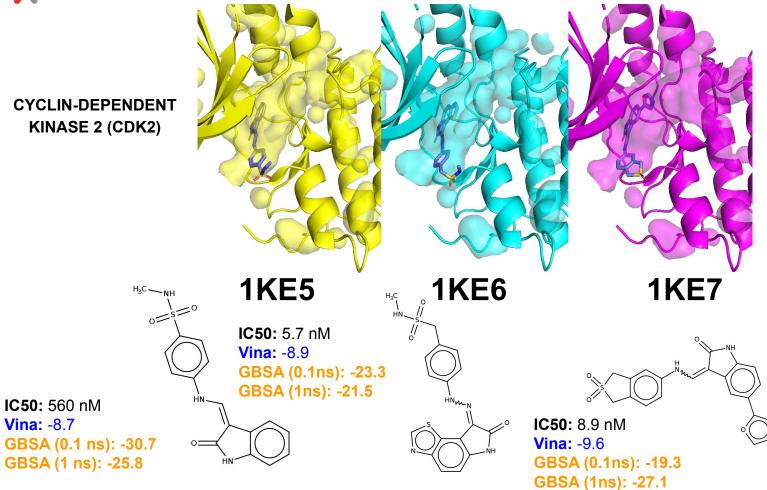
0.29

0.23

0.26

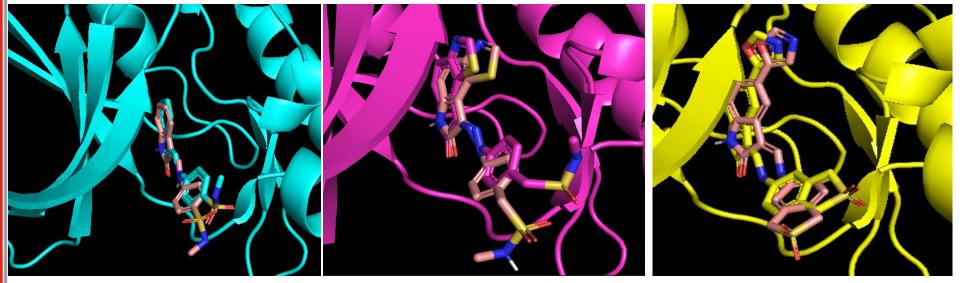
2.30

1.32

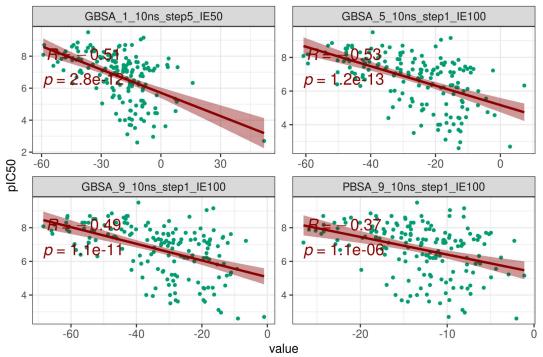

2.09

66

your molecules by energies obtained


from each method separately.

Docking best pose


1KE6

1KE7

Beta Secretase

10ns. 310K. GBSA. Pearson

Thank you for your attention!