De novo drug design

Guzel Minibaeva

Ph.D. student

Institute of Molecular and Translational Medicine Faculty of Medicine and Dentistry Palacky University

Size of explored and enumerated chemical space

real datasets

~ 160 M compounds ~ 105 M compounds

Pub[©]hem

~ 102 M compounds

Free

Commercial

ZINC

up to 1 B commercially available compounds

virtually enumerated dataset

GDB-17

166 B compounds = 1.66×10^{11}

Size of explored and enumerated chemical space

Hoffmann, T.; Gastreich, M., The next level in chemical space navigation: going far beyond enumerable compound libraries. *Drug Discovery Today* **2019**, 24, 1148-1156. (https://doi.org/10.1016/j.drudis.2019.02.013)

Size of explored and enumerated chemical space

Polishchuk, P. G.; Madzhidov, T. I.; Varnek, A., Estimation of the size of drug-like chemical space based on GDB-17 data. *Journal of Computer-Aided Molecular Design* **2013**, 27, 675-679. (<u>http://dx.doi.org/10.1007/s10822-013-9672-4</u>)

Virtual screening vs. de novo design

Virtual screening

De novo design

~10³⁶ drug-like compounds

10-100 compounds

Iterative workflow of de novo design

- **1. Structure generation** how to create/assembly new structures
- 2. Compound scoring how to estimate/predict a property of a compound
- **3. Search strategy** how to find compounds with optimal properties

De novo structure generation

- atom-based uses simple rules like add/change/remove atom/bond to perturb structures
- **fragment-based** uses fragment library to create structures
- reaction-based uses a set of reaction rules and a library of reactants

Atom-based structure generation

Molpher

Hoksza, D.; Škoda, P.; Voršilák, M.; Svozil, D., Molpher: a software framework for systematic chemical space exploration. *Journal of Cheminformatics* **2014**, 6, 7, 10.1186/1758-2946-6-7

Atom-based structure generation

Hoksza, D.; Škoda, P.; Voršilák, M.; Svozil, D., Molpher: a software framework for systematic chemical space exploration. *Journal of Cheminformatics* **2014**, 6, 7, 10.1186/1758-2946-6-7

Atom-based structure generation

parameters	atom-based
exhaustiveness of chemical space search	++++ very small steps; more suitable for systematic exploration of local chemical space
structure novelty	+++*
structure diversity	+++*
chemically valid structures	-
synthetically feasible	
combinatorial explosion / time consuming	

atom-based ≈ *ab initio*

Hartenfeller, M.; Zettl, H.; Walter, M.; Rupp, M.; Reisen, F.; Proschak, E.; Weggen, S.; Stark, H.; Schneider, G., DOGS: Reaction-Driven de novo Design of Bioactive Compounds. *PLOS Computational Biology* **2012**, 8, e1002380.

DOGS

γ-secretase modulators

Hartenfeller, M.; Zettl, H.; Walter, M.; Rupp, M.; Reisen, F.; Proschak, E.; Weggen, S.; Stark, H.; Schneider, G., DOGS: Reaction-Driven de novo Design of Bioactive Compounds. *PLOS Computational Biology* **2012**, 8, e1002380.

Retinoid X Receptor(RXR) Modulators

Merk D., et al. J. Med. Chem., 2018, 61 (12), pp 5442–5447

	reaction-based
exhaustiveness of chemical space search	+ depends on reactant library and reaction rules; only grow molecules
structure novelty	+
structure diversity	+
chemically valid structures	+++
synthetically feasible	+++
combinatorial explosion / time consuming	+++

reaction-based ≈ empirical

Pierce A.C., Rao G., Bemis G.W. J. Med. Chem., 2004, 47 (11), pp 2768–2775

BREED: HIV-1 protease inhibitors

Pierce A.C., Rao G., Bemis G.W. J. Med. Chem., 2004, 47 (11), pp 2768–2775

CONCEPTS

MD of fragments which are linking or breaking during the simulation in order to create more favorable structures

formation of certain bonds was forbidden: O–O, N–N, N–O, S–O, O–C–O, O–N–O, N–C–N, C_{α} – C_{α} , C– C_{α} –C

CONCEPTS: HIV-1 protease inhibitors

Pearlman D.A., Murcko M.A. J. Med. Chem., **1996**, 39 (8), pp 1651–1663

Kutchukian, P. S.; Lou, D.; Shakhnovich, E. I., FOG: Fragment Optimized Growth Algorithm for the de Novo Generation of Molecules Occupying Druglike Chemical Space. *Journal of Chemical Information and Modeling* **2009**, 49, 1630-1642.

Liu, T.; Naderi, M.; Alvin, C.; Mukhopadhyay, S.; Brylinski, M., Break Down in Order To Build Up: Decomposing Small Molecules for Fragment-Based Drug Design with eMolFrag. *J. Chem. Inf. Model.* **2017**, 57, 627-631

Polishchuk, P., CReM: chemically reasonable mutations framework for structure generation. J. Cheminf. 2020, 12 (1), 28.

CReM: chemically reasonable mutations

Generated structures are always chemically valid!

	fragment-based
exhaustiveness of chemical space search	++ variable, controlled by the size of fragments to replace
structure novelty	++
structure diversity	++
chemically valid structures	-/+ (+++)
synthetically feasible	-/+ (++)
combinatorial explosion / time consuming	++

fragment-based ≈ semi-empirical

De novo structure generation

Summary

	atom-based	fragment-based	reaction-based
exhaustiveness of chemical space search	++++ very small steps; more suitable for systematic exploration of local chemical space	++ variable, controlled by the size of fragments to replace	+ depends on reactant library and reaction rules; only grow molecules
structure novelty	+++*	++	++
structure diversity	+++*	++	++
chemically valid structures	-	(+++)	+++
synthetically feasible		(++)	+++
combinatorial explosion / time consuming		++	+++

Recurrent neural network (RNN)

Segler, M. H. S.; Kogej, T.; Tyrchan, C.; Waller, M. P., Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks. *ACS Central Science* **2018**, 4, 120-131.

Segler, M. H. S.; Kogej, T.; Tyrchan, C.; Waller, M. P., Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks. *ACS Central Science* **2018**, 4, 120-131.

-15

-20

15

20

Segler, M. H. S.; Kogej, T.; Tyrchan, C.; Waller, M. P., Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks. *ACS Central Science* **2018**, 4, 120-131.

	deep learning
exhaustiveness of chemical space search	++
structure novelty	++
structure diversity	++
chemically valid structures	++
synthetically feasible	?
combinatorial explosion / time consuming	+++

Issue of SMILES based representation the same structure can be represented by different SMILES

COc1cc2CC(CC3CCN(Cc4ccccc4)CC3)C(=O)c2cc1OC COc1cc2c(cc1OC)C(=O)C(CC1CCN(Cc3ccccc3)CC1)C2

Scoring functions

Can be any but preferably smooth to follow the chemical similarity principle:

- similarity measures
- QSAR model prediction
- pharmacophore fit
- docking score

...

• molecular dynamics

ligand-based scoring functions

structure-based scoring functions

Inverse QSAR

D_1	D ₂	D ₃	 D _N
1	0	9	 1
4	0	1	 1
0	2	3	 3
4	0	0	 1

Inverse QSAR

Atom signatures

Faulon J-L, Churchwell CJ, Visco DP, The Signature Molecular Descriptor. 2. Enumerating Molecules from Their Extended Valence Sequences – J. Chem. Inf. Comput. Sci., **2003**, 43 (3), pp 721–734

Inverse QSAR

Inverse QSAR with monotonically changed descriptors

Miyao, T.; Arakawa, M.; Funatsu, K., Exhaustive Structure Generation for Inverse-QSPR/QSAR. *Molecular Informatics* **2010**, 29, 111-125.

Inverse QSAR: deep learning

Autoencoder

Inverse QSAR: deep learning

Gómez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Hernández-Lobato, J. M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A., Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. *ACS Central Science* **2018**, 4, 268-276.

Inverse QSAR: deep learning

Gómez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Hernández-Lobato, J. M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A., Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. *ACS Central Science* **2018**, 4, 268-276.

Control over synthetic feasibility

37

Assessment of synthetic feasibility

Genheden et al. J Cheminform (2020) 12:70 https://doi.org/10.1186/s13321-020-00472-1

Journal of Cheminformatics

SOFTWARE

GDBMedChem

ChEMBL

GDBChEN

Voršilák et al. J Cheminform

AiZynthFinder: a fast, robust and flexible open-source software for retrosynthetic planning

Samuel Genheden^{1*}, Amol Thakkar^{1,2}, Veronika Chadimová¹, Jean-Louis Reymond², Ola Engkvist¹ and Esben Bierrum^{1*}

Classifier

Al Route

Plannin

(2020) 12:35

GDBscore

Synthetic

Accessibility

RAscore

Chemical Science

EDGE ARTICLE

Check for updates

Cite this: Chem. Sci., 2021, 12, 3339 d All publication charges for this article have been paid for by the Royal Society of Chemistry

Retrosynthetic accessibility score (RAscore) – rapid machine learned synthesizability classification from Al driven retrosynthetic planning*

Amol Thakkar, 💿 ** Veronika Chadimová, 💿 * Esben Jannik Bjerrum, 💿 * Ola Engkvist ^(b)^a and Jean-Louis Reymond ^(b)*^b

Journal of Cheminformatics

RESEARCH ARTICLE

https://doi.org/10.1186/s13321-020-00439-2

SYBA: Bayesian estimation of synthetic accessibility of organic compounds

Milan Voršilák^{1,2}, Michal Kolář^{3,4}, Ivan Čmelo¹, and Daniel Svozil^{1,2*}

Open Access

View Article Online

Examples of SA scores (ChEMBL22)

Ertl, P.; Schuffenhauer, A., Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and 39 fragment contributions. *Journal of Cheminformatics* **2009**, 1, 8. (10.1186/1758-2946-1-8)

Control of synthetic feasibility within CReM

Polishchuk, P., Control of Synthetic Feasibility of Compounds Generated with CReM. Journal of Chemical Information and Modeling **2020**, 60, 6074-6080. (10.1021/acs.jcim.0c00792)

V-SYNTHES

Fig.1 |V-SYNTHES approach to modular screening of Enamine REAL Space. A general overview of the four-step algorithm (left) and examples for each step (right). Asterisks in step one show the attachment points of synthons; arrows show possible pairing of minimal synthons with real synthons.

Sadybekov, A. A. et al, Synthon-based ligand discovery in virtual libraries of over 11 billion compounds. *Nature* **2021**. (10.1038/s41586-021-04220-9)

V-SYNTHES

			a $(-\sqrt{n})^{H} \sqrt{n} \sqrt{n}$				Ç	
								010
			CB ₁ K _i		0.28 (0.22–0.3	6) μM		0.76 (0.62–0.93) μM
а			CB ₂ K _i		0.54 (0.43-0.6	7) μM		4.17 (3.14–5.62) μM
						CI F-	RH-B-CN	
ő _/	\smile			523			665	✓ 673
			CB ₁ K _i	1.82 (1.46–2	2.28) μM	0.30	(0.32-0.47) µM	0.97 (0.84–1.14) μM
523 sc	affold		CB ₂ K _i	1.59 (1.27–1	.98) μM	0.82	(0.71–0.95) μM	3.66 (2.98–4.51) μM
c	R1		\$ \$ \$ \$	→ → → → →	0	-0NH	$Q_{\mathbb{N}_{\gamma}}$	
	Compound	733	736	738	742	747	749	
CB, functional	K _i (nM)	871	1,185	856	2,340	455	209	
potency	CI 95% (nM)	(720–1,051)	(868–1,603)	(725–1,009)	(1,878–2,919)	(373–558)	(177–248)	
CB ₂ functional	K _i (nM)	10.9	48.5	125	120	9.6	49.2	
potency	CI 95% (nM)	9.3-12.9	38.6-61.0	105-148	101-144	8.58-10.8	42.1-57.6	
CB, binding	K _i (nM)	43.2	140	23.1	394	228	689	
affinity	CI 95% (nM)	28.2-66.1	105-186	13.9–38.6	281-551	172-303	472-1,004	
CB ₂ binding	K _i (nM)	1.2	2.8	13.0	6.4	0.9	4.0	
affinity	CI 95% (nM)	0.9–1.6	2.0-3.7	10.2-16.6	5.2-7.8	0.6–1.2	2.5-6.5	

Sadybekov, A. A. et al, Synthon-based ligand discovery in virtual libraries of over 11 billion compounds. *Nature* **2021**. (10.1038/s41586-021-04220-9)

Take home message

- De novo design can efficiently explore much larger chemical space than virtual screening
- There are multiple approaches to generate chemically valid structures, all of them have their pros and cons
- The main issue of de novo design is synthetic feasibility of generated compounds
- There are several ways how to control synthetic feasibility

Thank you for your attention