#### **Drug Design**

# **Molecular docking**

Karel Berka

Dpt. Physical Chemistry, RCPTM, Faculty of Science, Palacky University in Olomouc

#### Motto



tj. 18 hod 8 min 18 s

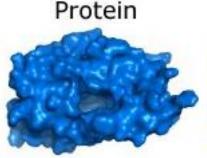
### Outline

- Structure-based drug design (SBDD)
  - Docking
  - Virtual screening
  - de novo design
  - Pharmacophore search
- Ligand-based drug design (LBDD)
  - Similarity matching
  - Pharmacophore search
  - QSAR

#### **Possibilities of Drug Design**

|                             | Known ligand                                                                                                                                                                                                       | Unknown ligand                                                           |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Known target<br>structure   | Structure-based drug design<br>(SBDD)<br>Docking                                                                                                                                                                   | <i>De novo</i> design                                                    |
| Unknown target<br>structure | Ligand-based drug design<br>(LBDD)<br>1 or more ligands<br>• Similarity search<br>Several ligands<br>• Pharmacophore<br>Large number of ligands (20+)<br>• Quantitative Structure-Activity<br>Relationships (QSAR) | CADD not possible<br>some experimental<br>data needed<br>ADMET filtering |

# Molecular Docking Idea


• Finding the best "fit" of ligand to receptor



# Molecular Docking

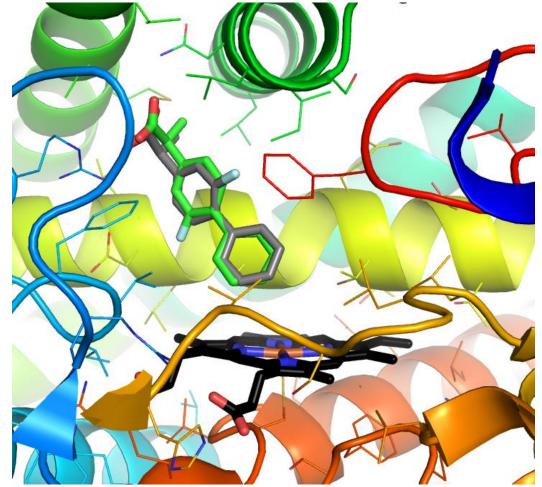
Computational method mimicking binding of ligand to receptor

Ligand



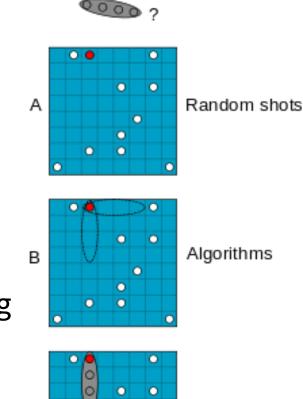


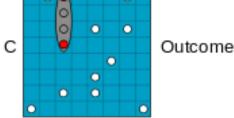
Binding site


- Prediction
  - Binding pose of molecule in the binding (active) site = geometry
  - Binding affinity (score)
     = binding energy

Complex Complex

Image credit: Charaka Goonatilake, Glen Group, University of Cambridge. http://wwwucc.ch.cam.ac.uk/research/cg369-research.html


# **Binding Pose**


- Structural arrangement of ligand within receptor/enzyme
- Driven by molecular interactions



# Search Algorithms

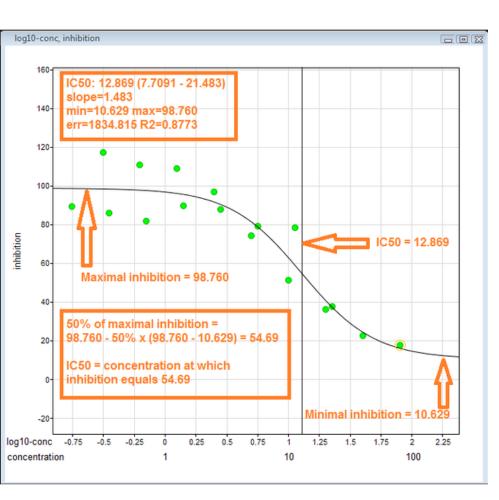
- Monte Carlo
  - Random selection
  - Metropolis condition
    - (if better energy -> accept new pose; else check depend on energy difference)
- Genetic algorithms
  - Poses described by "Genes"
  - Best poses "mate" to generate offspring
  - Converge faster than MC
- Simulated heating
  - Heating more energy barrier crossing
  - Cooling minima search





# Energetics

Equilibrium binding constant
 K<sub>d</sub> = [P...L] / [P][L]
 - correspond to free energy of binding:


$$\Delta G_{bind} = -RT \ln K_{d}$$

Free energy – combination of enthalpy and entropy

$$\Delta G_{bind} = \Delta H_{bind} - T\Delta S_{bind}$$

- $k_{cat}$ ,  $K_i$ ,  $IC_{50}$ ,  $EC_{50}$  other values used for characterization
  - depend on concentration and affinity of substrate and concentration of protein

IC<sub>50</sub>



- Concentration with 50% of inhibition activity
  - Comparison of affinity between two compounds
  - Cheng-Prusoff equation

$$K_i = \frac{IC_{50}}{1 + \frac{[S]}{K_m}}$$

Often logarithmic (mol/L)

 $pIC_{50} = -log_{10}(IC_{50})$ 

Lower = better
 pM (excelent) > nM (great) >

 $\mu$ M (common) > mM (unusable)

Visual demonstration of how to derive IC50 value: Arrange data with inhibition on vertical axis and log(concentration) on horizontal axis; then identify max and min inhibition; then the IC50 is the concentration at which the curve passes through the 50% inhibition level. (wikipedia)

#### **Molecular Interactions**

#### Enthalpy:

- Electrostatics (partial charges)
- van der Waals (dispersion and repulsion)
- Hydrogen bonding (directionality)
- Desolvatation (cavitation energy)

Entropy

- Conformation selection (flexibility)
- Solvatation (hydrophobic effect)

# **Scoring Function**

• Binding affinity approximation

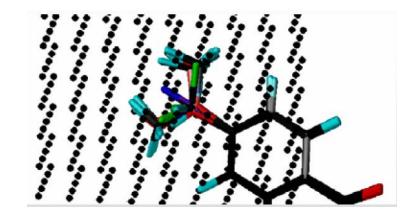
 $\Delta G_{\textit{bind}} = \Delta G_{\textit{solvent}} + \Delta G_{\textit{conf}} + \Delta G_{\textit{int}} + \Delta G_{\textit{rot}} + \Delta G_{\textit{t/r}} + \Delta G_{\textit{vib}}$ 

- It should be:
  - Quick
  - Score the right pose the best
- Parameterized against known binding poses and affinities
- Types:
  - Force-field (DOCK, Autodock, GoldScore)
  - Empirical (Glide, ChemScore)
  - Knowledge-based (DrugScore)

# **Scoring Function**

- Score individual binding poses during search objective function
- 2. Identification of lowest (best) binding energy
- 3. Sort **binding free energies** between individual ligands selection of the best ligand
- Not necessarily the same for all points
  - First part is most computationally intensive needs to be quickest
  - Sorting should be the finest

# **Scoring Function Types**

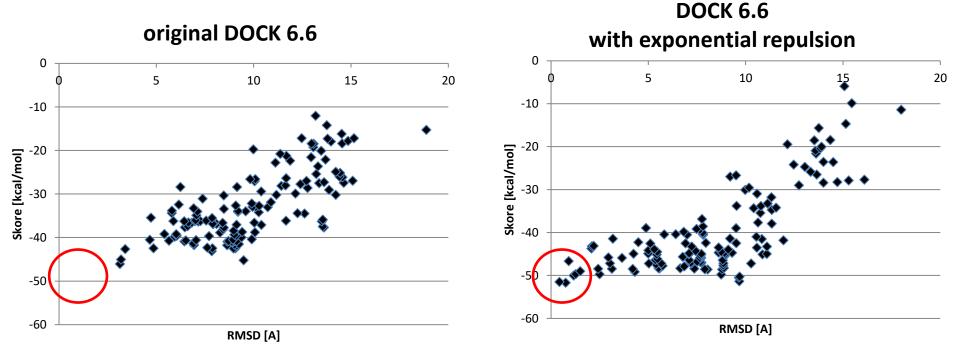

- Force-field based on molecular mechanical force-fields
  - Physical model Interaction terms (elstatic, vdW,...)
  - Goldscore, DOCK, Autodock
- QM-based based on quantum chemical calculations
   PM6-DH
- Empirical parameterized against exp. binding affinities (K<sub>d</sub>,IC<sub>50</sub>)
   Arbitrary terms (H-bonds, hydrophobic contacts)
   ChemScore, PLP, Glide SP/XP
- Knowledge-based based on protein-ligand complexes
  - Boltzmann hypothesis
    - typical binding motives -> stronger binding
  - PMF, DrugScore, ASP

#### **Force-field Scoring Functions**

Physical interaction terms

 $E = E_{bond} + E_{angle} + E_{dih} + E_{coulomb} + E_{vdw} + E_{solv}$ 

- Often only **intermolecular** terms  $(E_{coul} + E_{vdw} + E_{solv})$
- Intramolecular are usually changed to rigid (bonds, angles) or screened by some value (dihedrals by 5 deg)
- Grid time-saving
  - Protein is divided into grid and interactions are pre-calculated at each point
  - Ligands interaction is evaluated by multiplication of grid potential with ligand atoms




- Table seach is quicker than full energy evaluation
- Receptor is usually one, while there is a series of ligands

#### Bazgier V, Banáš P, Berka K, Otyepka M, in preparation

#### **Scoring Function Problems Example**

- Problems:
  - Repulsion
  - Electrostatics





### QM based Scoring Function

- Based on quantum chemical calculations
- PM6-DH2

 $\Delta G'_{\rm w} = \Delta H_{\rm w} - T\Delta S_{\rm w} + \Delta E_{\rm def}({\rm I}) + \Delta \Delta G_{\rm w}({\rm I}).$ 

- $\Delta H_w$  interaction enthalpy
- $-T\Delta S_w$  interaction entropy
- $\Delta E_{def}$  correction for inhibitor deformation
- $\Delta\Delta G_w$  correction for inhibitor hydration

#### **Empirical scoring function**

- Decomposition of binding energy into pre-defined "chemical terms"
- Specific interactions taken explicitly
  - H-bonding,  $\pi$ - $\pi$  stacking, ...

# Linear form of terms is usually used (albeit unphysical)

 $DG_{bind} = DG_{solvent} + DG_{conf} + DG_{rot} + DG_t + DG_r + DG_{vib}$ 

# Böhm's empirical scoring function

 $\Delta G_{bind} = \Delta G_0 + \Delta G_{hb} \sum f(\Delta R, \Delta \alpha)$ 

h-bonds

interactions

- linear summation of individual binding terms ۲
- **Bohm's scoring function** 
  - H-bonding, ion interaction, lipophilic interactions and conformational terms<sup>+  $\Delta G_{ionic}$ </sup>  $\sum f(\Delta R, \Delta \alpha)$
- Hydrogen bonding a ionic interactions ٠
  - $+ \Delta G_{lipo} |A_{lipo}| + \Delta G_{rot} NROT$  Depend on na geometrical interaction – large deviations are penalized (ideal distance R, ideal angle  $\alpha$ ).
- Lipophilic term ٠
  - Proportional to lipophilic surface contact between protein and ligand  $(A_{lipo})$
- Conformational entropic term ٠
  - penalization for freezing of internal rotations of ligand entropy
  - Proportional to number of rotationable bonds of ligand (NROT)
- $\Delta G$  values of individual terms are constants obtained by linear regression • on experimental binding data on 45 protein–ligand complexes

#### Chemscore

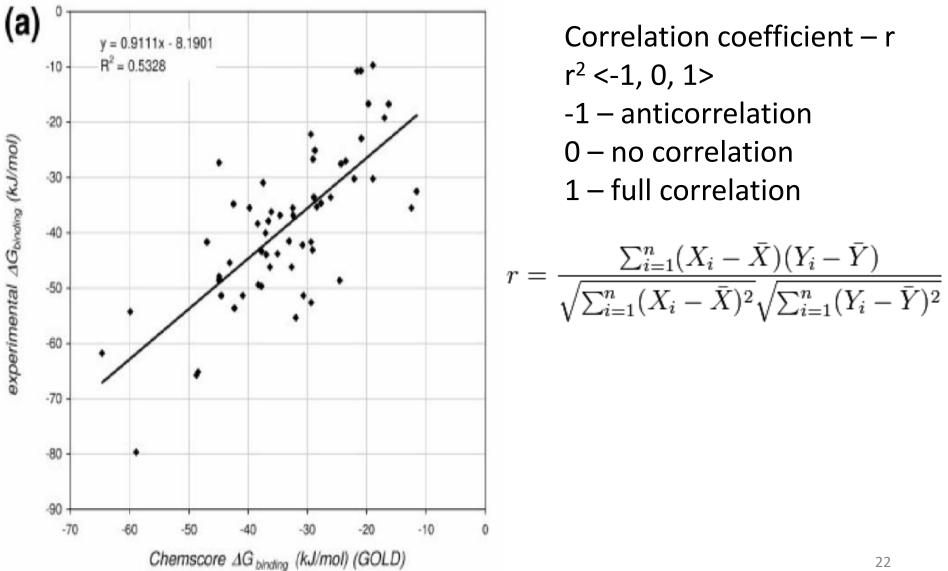
• Original Chemscore function for binding free energies

$$\begin{split} \Delta G_{binding} &= \Delta G_o + \Delta G_{hbond} S_{hbond} + \Delta G_{metal} S_{metal} \\ &+ \Delta G_{lipo} S_{lipo} + \Delta G_{rot} H_{rot} \end{split}$$

- $S_{hbond}$  hydrogen bonding
- S<sub>lipo</sub> lipophilic interactions
- S<sub>metal</sub> acceptor-metal interactions
- H<sub>rot</sub> loss of conformational entropy on ligand binding J. Comput. Aided Mol. Des. 11, 425-445, 1997

#### Chemscore

Chemscore for docking


Add more terms – clash, ligand internal, protein-ligand covalent

$$\Delta G'_{binding} = \Delta G_{binding} + E_{clash} + E_{int} + E_{cov}$$

- Complex functional forms look them up!
- Parameters carefully rederived

Proteins 52, 609-623, 2003

#### **Chemscore Accuracy**

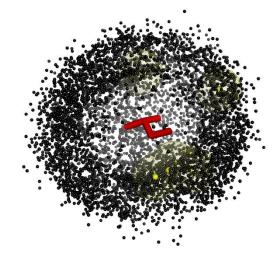


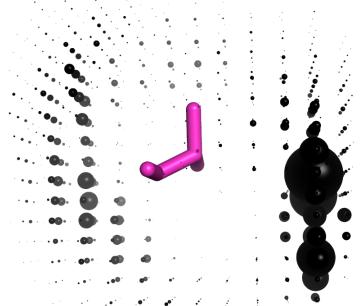
#### **Empirical Scoring Functions Problems**

- Heavy dependence on training set
- Can have missing interaction terms

   metal-ion
- Parameterized on success
  - Use of molecules that bind in parameterization => artificial binding of molecules that otherwise would not bind

=> Use of **decoys** – molecules, which are of similar size as those really binding but not binding


#### **Knowledge-based Function**


Correlation of structural data from ligand/protein complexes with free energy of binding

Use a rigorous statistical mechanical result:

 $A = -kT \ln g(r)$ 

- This equation holds for an ensemble of particles at equilibrium (in gas)
- not necessarily proteins





#### Drugscore

#### DRUGSCORE

$$\Delta W_{i,j}(r) = W_{i,j}(r) - W(r) = -\ln \frac{g_{i,j}(r)}{g(r)}$$

$$g(r) = \frac{\sum_{i} \sum_{j} g_{i,j}(r)}{i^* j}$$

Short-range (6 Å) contributions only – ignoring solvation

J. Mol. Biol. 295, 337-356, 2000

# **Docking Preparation**

- Receptor
  - Identification of relevant structure
  - Structure preparation (missing atoms, hydrogen assignment)
- Ligand
  - Structure preparation
  - Isomers, conformations
- Other tasks
  - Water
  - Flexibility

#### **Receptor Preparation**

- Where
  - identification of binding site
- Good structure
  - Low R (accuracy)
  - Low B-factors (flexibility)
  - Low R-free (correctness)
- Flexibility
  - Rigid docking into several structures
    - Molecular Dynamics
    - more Xtals
  - Flexible docking

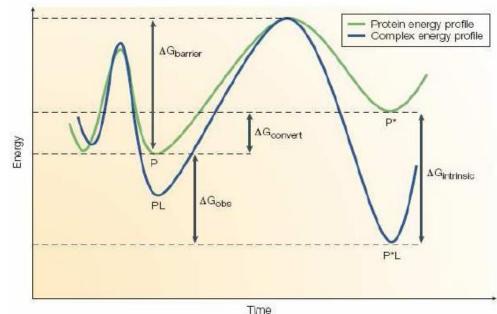
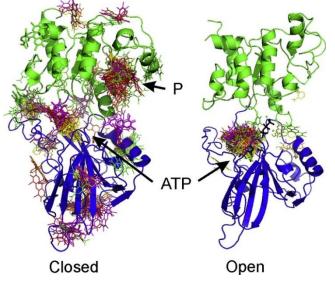
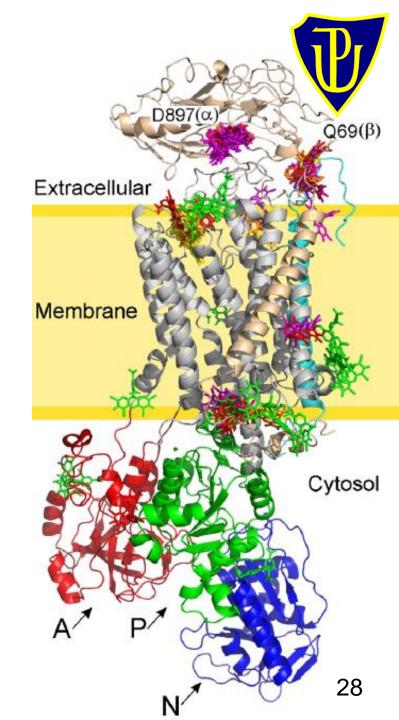




Figure 1 | **Protein mobility and ligand binding.** A protein is considered to exist in two conformations (P and P') with an energy difference  $\Delta G_{convert}$ . The ligand (L) can bind the protein (P) to give a complex (PL), or bind to P\* to give a complex (P\*L). Although P\* has a higher free energy, it might offer greater scope for interaction with L. For instance, P\* might represent a conformer in which the binding site has opened and exposed hydrophobic patches. This is energetically unfavourable, but offers the potential for favourable interactions with the hydrophobic moiety of a suitable incoming L, thereby giving rise to a large, favourable interaction  $\Delta G_{ntrivic}$ . The resulting complex (P\*L) has a lower energy than that of the complex PL. The observed affinity of L for the protein conformational ensemble is governed by  $\Delta G_{os}$ . Slow binding kinetics might well be observed, as P\* is a higher-energy conformer than P and an energy barrier ( $\Delta G_{barrie}$ ) must be sumounted before optimal binding to L can take place.


Teague, Nature Reviews Drug Discovery 2, 527-541 (July 2003) | doi:10.1038/nrd1129

#### Example 1: Na<sup>+</sup>/K<sup>+</sup>–ATPase

- Ion pump
- Search for binding site
  - Fluorescent probes
  - RH241 probe
- Docking is highly sensitive to protein conformation.



Havlikova M, ... Berka K, ... et al. *BBA*, 1828(2), 568, 2013 Huličiak M, ... Berka K, ... et al. *submitted*, *2014* 



#### **Protein Conformations**

- Rigid Receptor Approximation
  - Most docking programs use rigid receptor for speed
- but...
  - Protein can deform in order to accept several ligands (ligand-induced fit)
  - Amino acids several conformations
- Flexible Receptor docking
  - Increase of search size higher computational (
  - 1. Side chains only

(docking selected sidechains together with ligands)

2. Docking into several structures of protein Larger movements can be taken into account

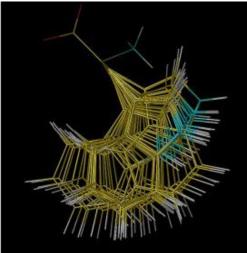
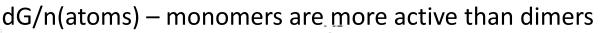
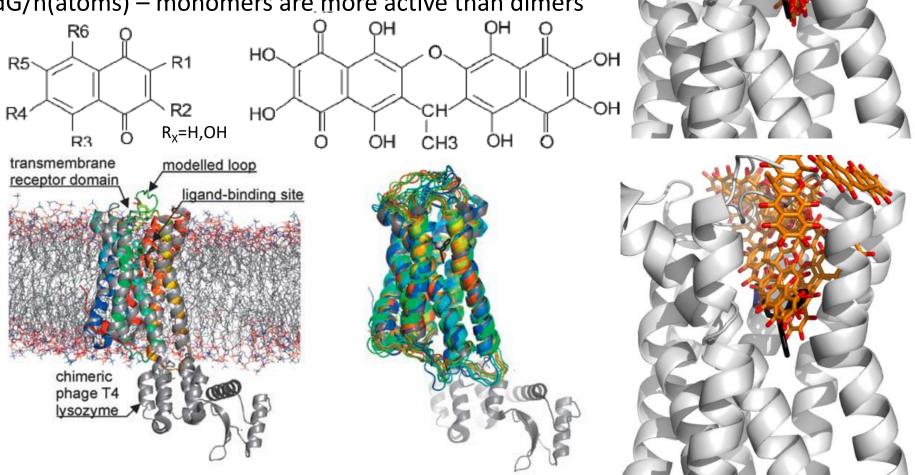
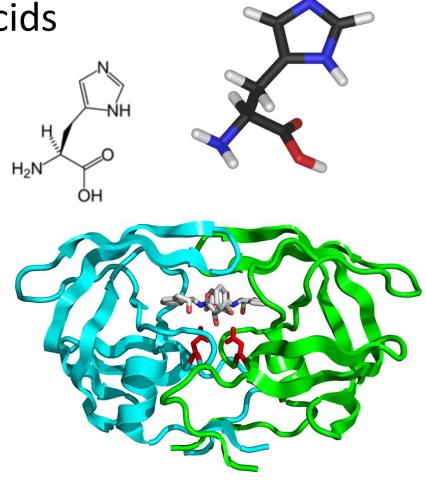





Image: Cláudio M. Soares, Protein Modelling Laboratory, http://www.itqb.unl.pt/labs/proteinmodelling/activities/psccip-pf

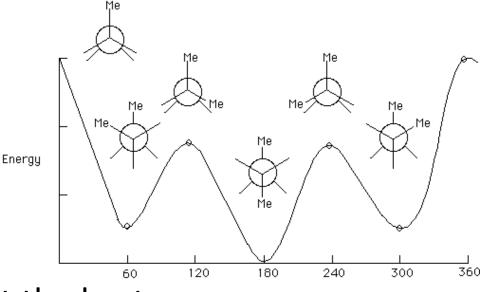
#### Example 2: H1R receptor

Antiallergic compounds



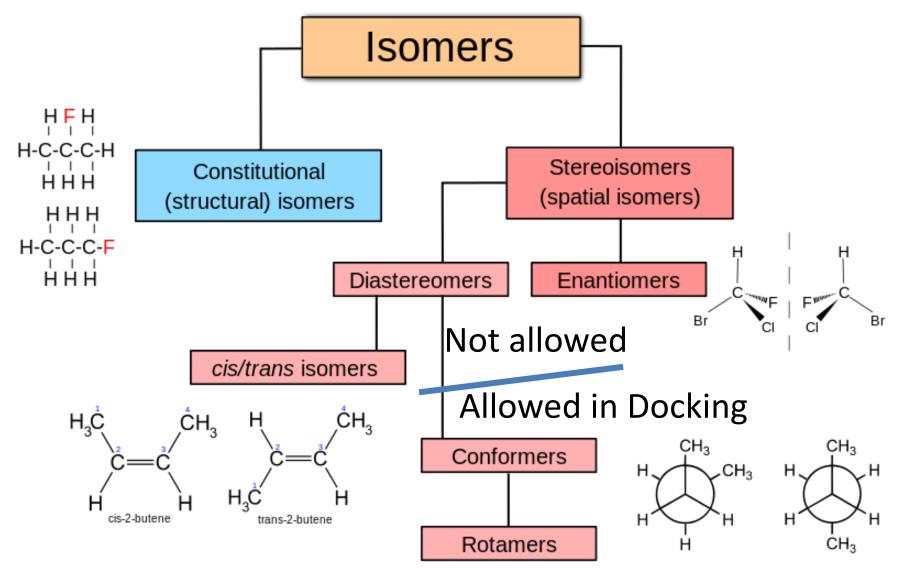



Pozharitskaya ON, ..., Berka K, ... et al. Planta Med. 79(18), 1698-1704, 2013.


#### **Receptor Preparation**

- protonation of aminoacids
  - His (pKa ~ 6.04)
  - Surroundings pKa shifts
     (Asp in HIV protease)
- tautomerization
- rotamers
- pre-selection change results significantly

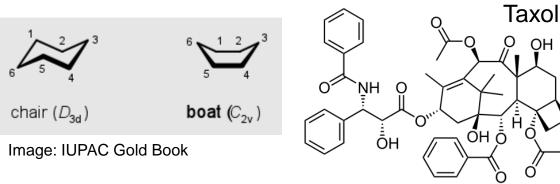


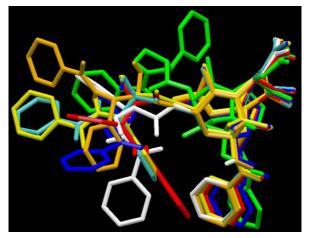

# Ligand Preparation

- Ligand Flexibility
  - Ensemble of all possible ligand conformations
  - rotation C-C bonds,
     but not C=C or rings
  - Angles and bonds fixed
- Izomerization
  - Charge and tautomers
  - Prepare all and then select the best
    - Relative energy
  - Ask an expert! (organic chemists)



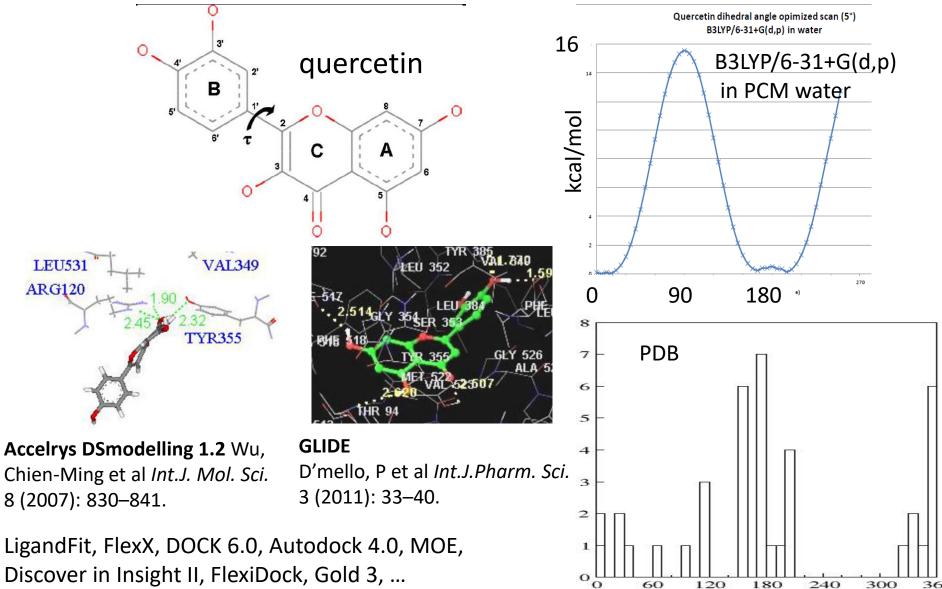
Me - Me Torsion Angle


#### Isomers




Wikipedia.org

# Ligand conformation


- Conformation rotation around torsion angles
  - N rotational bonds rotate by  $\theta$  degrees (5°)
  - Conformations: (360°/θ)<sup>N</sup>
- Question
  - If the torsion angles are incremented in steps of 30°, how many conformations does a molecule with 5 rotatable bonds have, compared to one with 4 rotatable bonds?
- Having too many rotatable bonds results in "combinatorial explosion"
- Also ring conformations





Lakdawala *et al. BMC Chemical Biology* 2001 **1**:2

#### Ligand Structure Generation Torsion angles



TU

# Example: CDK2 kinase

OH



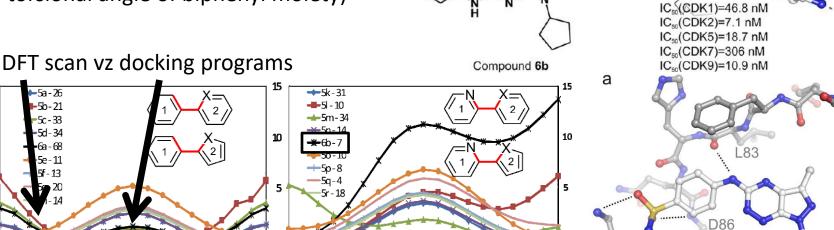
Cell cycle regulation

15

10

30

Dihedral torsional energy [kcal/mol]


- Result: Inhibitors of CDK2 in nM range
- Autodock Vina speed
- Ligand conformational troubles

(planar NH close to aromatic ring, torsional angle of biphenyl moiety)

120

Torsional angle

[degree]



90

**Torsional angle** 

[degree]

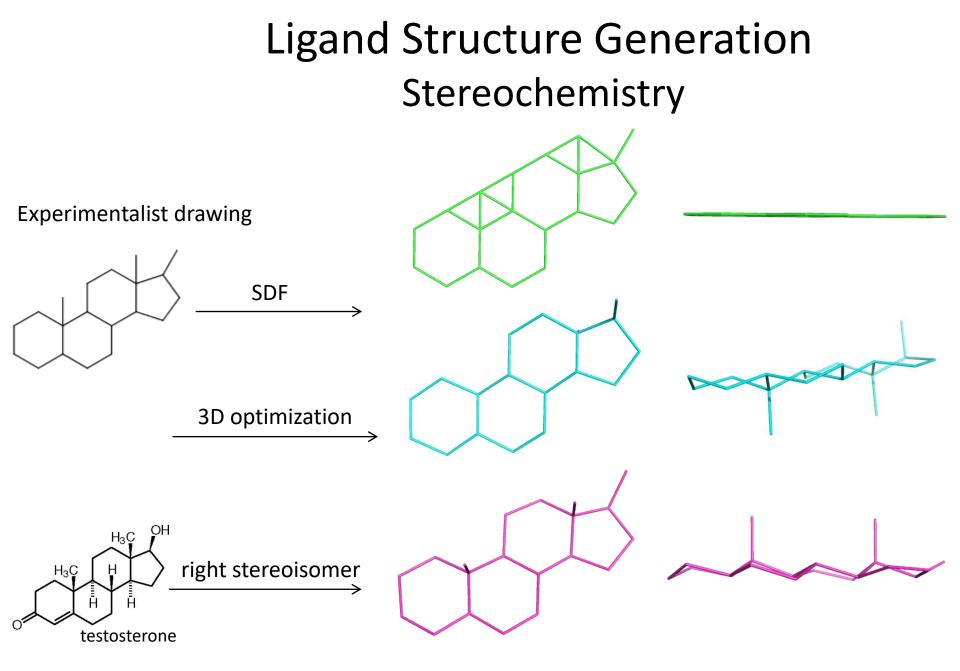
120

150

180

K89

30


ന

Gucký T,... Berka K, ... et al J. Med. Chem., 56 (15), 6234@247, 2013 Mojzych M, ... Berka K, ... et al Eur. J. Med. Chem. 78, 217-224, 2014

150

180 0

F80



#### Ligand Structure Generation Ligand size

R-roscovitine

CDK2 inhibitors

ÓН

R-CR8

- Ligands in series
  - Typically similar size –
     easy comparison by score (e.g. Vina dG<sub>bind</sub>)
- Ligands in library
  - Diverse sizes

ZINCdb – propane (MW = 44 Da)

-TG(18:0/18:1(9Z) (MW = 1000 Da)

Larger ligand = more interactions = stronger binding (albeit arteficially entropy)

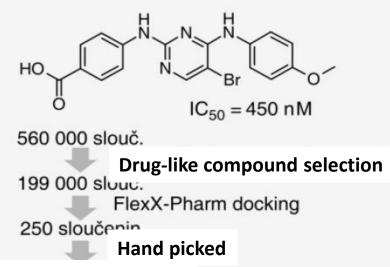
– Size incorporating measures

TG(18:0/18:1(9Z)

dinaciclib

# **Programs For Docking**

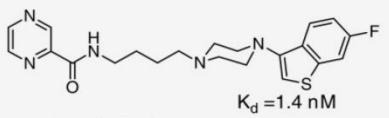
- **DOCK** (I. D. Kuntz, UCSF)
- **AUTODOCK** (Arthur Olson, The Scripps Research Institute)
- Vina (Arthur Olson, The Scripps Research Institute)
- RosettaDOCK (Baker, Washington Univ., Gray, Johns Hopkins Univ.)
- ArgusLabs
- GOLD
- FlexX
- Hex
- Glide (Schrodinger)


# **Virtual Screening**



- Equivalent of biological screening (HTS – high throughput screening)
- Testing of thousands of compounds in silico
  - For further testing
  - For lead optimization
  - For leading organic synthesis

# **Virtual Screening Examples**


#### **Checkpoint kinase 1**



103 tested, 36 successful

J. Med. Chem. 47, 1962 (2004).

#### $\alpha_{1A}$ adrenergic receptor

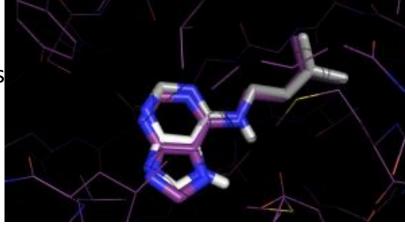


mnoho sloučenin

Drug-like compound selection 22 950 sloue.

GOLD docking

300 sloučenin

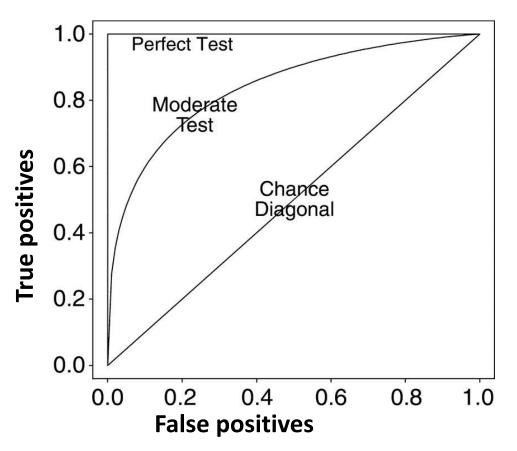

Statistical analysis

#### 80 tested, 37 successful

J. Med. Chem. 48, 1088 (2005).

# Quality control

- Redocking (back to Xtal)
  - RMSD < 2A
  - flexible ligand docking ~70%
  - test for scoring functions/docking programs
- Correlation plot (r<sup>2</sup> > 0.5)
  - $-\Delta G_{eff}$
- test sets validation
  - GOLD test set, Astex set
  - decoys ZINC, DUD (similar phys-chem., different structures)
- Virtual Screening
  - Enrichment factor
  - (BED)ROC curves




a/n - top (e.g. top10) EF = ----- a - active - n - totalA/N - overall

 $\Delta G_{eff} = \Delta G_{eff} / N_{nonHatoms}$ 

## **ROC** curve

- Receiver operator characteristic curve
- – signal to noise ratio



# Sorting Quality



- ROC
  - receiver operating characteristic curve
- AUAC
  - area under the accumulation curve
- average rank of actives
- EF
  - enrichment factor
- RIE
  - robust initial enhancement
- BEDROC
  - Boltzmann-enhanced discrimination of receiver operating characteristic

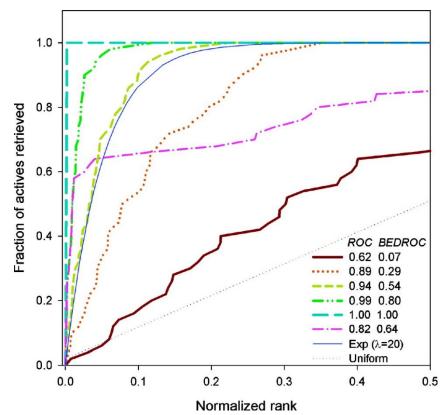



Figure 9 Different accumulation curves from sampling (n = 50, N = 25000) shown together with the corresponding *ROC* and *BEDROC* values where  $\alpha = 20.0$ . An exact CDF with  $\lambda = 20$  is also shown to highlight the fact that the *BEDROC* metric returns a value of 1/2 for a curve close to this CDF.

# **Docking Summary**



- Usable in SAR (structure-activity relationship)
  - explore the interactions between ligands and receptor
  - can lead drug development
- Troubles
  - Ligand preparation 3D generation, torsion angles
  - Receptor preparation protein flexibility
  - Scoring function identification of right binding pose, size of ligand issue

# **Tutorial preparation**

Programs installation:

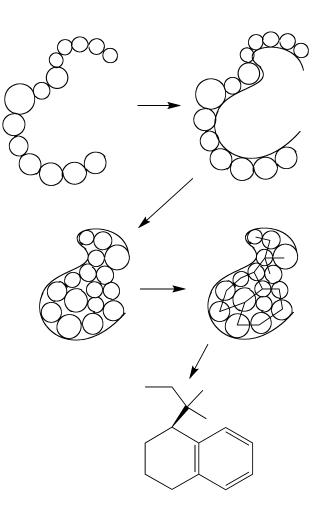
• Python 2.7

http://www.python.org/download/releases/

• Pymol

http://www.lfd.uci.edu/~gohlke/pythonlibs/#pymol

Autodock Tools


http://mgltools.scripps.edu/

Autodock Vina

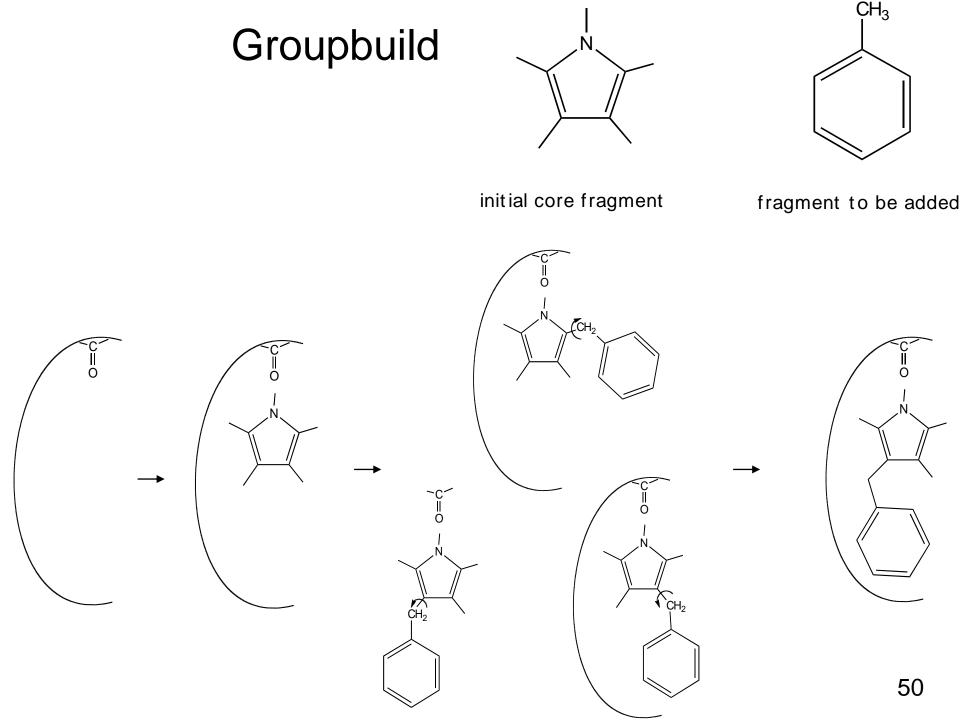
http://vina.scripps.edu/

## de novo docking

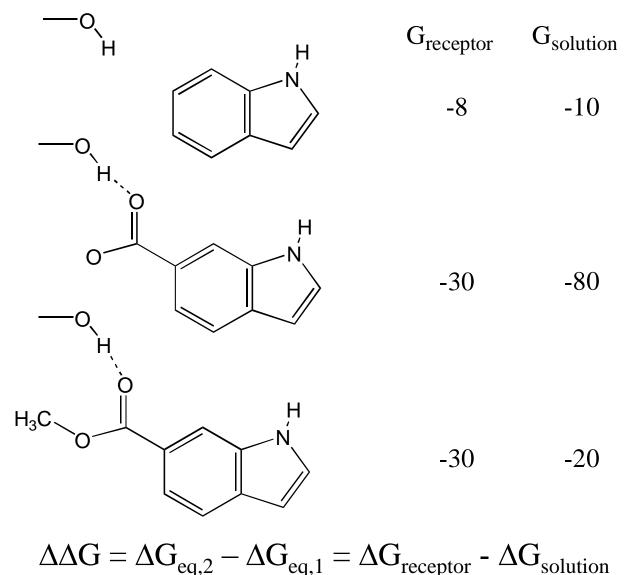
- Surface of receptor (SASA -Connelly)
- 2) "negative" of surface fill with spheres
- 3) Distances between spheres
- 4) Sphere distance to Bond distance conversion
- 5) Search in small molecule database
- Selection of ligands with largest overlap with spheres
- 7) Scoring



# Groupbuild


Building of new compounds by filling of active site by random fragments

Algorithm:


- 1) Grid for receptor binding site
- 2) Structure generation
  - 1) Docking of "core" fragment
  - 2) Build up (random fragments additions to core)
  - 3) Selection of best structures
  - 4) Iterate steps 2 and 3 until final criteria fulfilled (number of steps, minimal energy, etc.)

# 3) Selection of final structures for synthesis

FlexX, AutoGrow



### Groupbuild Example for Hypothetical Receptor



51