Pharmacophore modeling

Pavel Polishchuk

Institute of Molecular and Translational Medicine Faculty of Medicine and Dentistry Palacky University

pavlo.polishchuk@upol.cz

Virtual screening methods

complexity increases

Early pharmacophore models

estradiol and trans-diethylsilbestrol.

Early pharmacophore models

⁽S)-(+) –Epinephrine

(R)-(-) –Epinephrine (Adrenalin) A **pharmacophore** is the ensemble of steric and electronic features that is necessary to ensure the optimal supramolecular interaction with a specific biological target structure and to trigger (or block) its biological response.

Annu. Rep. Med. Chem. 1998, 33, 385–395

Universal

Pharmacophore models represent chemical functions, valid not only for the currently bound, but also unknown molecules

Computationally Efficient

Due to their simplicity, they are suitable for large scale virtual screening (~10⁸ compounds, also in parallel settings)

Comprehensive & Editable

Selectivity-tuning by adding or omitting chemical feature constraints, information can be easily traced back

Atom- and pharmacophore-based alignment

Methotrexate

Dihydrofolate

Hydrogen bonding patterns

Atom-based alignment

Pharmacophore alignment

Feature-based pharmacophore models

Features: Electrostatic interactions, H-bonding, aromatic interactions, hydrophobic regions, coordination to metal ions ...

LS: Comparability vs Specificity of Chemical Features

Levels	Universality	Specificity	Classification	Example
1		+++	Molecular graph descriptor (atom, bond) with geometric constraint	A phenol group facing a parallel benzenoid system within a distance of 2–4A
2	_	++	Molecular graph descriptor (atom, bond) without geometric constraint	A phenol group
3	++	+	Chemical functionality (hydrogen bond donor, acceptor) with geometric constraint	H-bond acceptor vector including an acceptor point as well as a projected donor point; aromatic ring including a ring plane
4	+++	-	Chemical functionality (positive ionizable area, lipophilic contact) without geometric constraint	H-bond acceptor without the projected point; lipophilic group

LigandScout SMARTS pharmacophore patterns

	Inclusion patterns	Exclusion patterns
HBA-F	{[O,S]}[#1]	c1nnnn1
	${N}[#1]$	
	$C{F}$	
HBD	{[N,O,S;X1,X2]}	[-,-2,-3]
PI	{[NX3]}([CX4])([CX4,#1])[CX4,#1]	
	${N}=[CX3]({[N;H1,H2]})[! N]$	
	N=[CX3]({[NH1]}){[NH1]}	
	$\{[+,+2,+3;! \ (*[-,-2,-3])]\}$	
NI	$[S,P](={O})(={O}){[OH]}$	
	$[S,C,P](={O}){[OH]}$	
	${c}1{n}{n}{n}{n}{n}{1$	
	{[-,-2,-3;! \$(*[+,+2,+3])]}	

Structure-based pharmacophores

Typical ligand-based pharmacophore modeling workflow

Pharmacophore software

Software	Input	Identification methods	Virtual screening capability	Free for academic use ^a
FLAP ⁹	Ligand, complex, apo	Molecular field	Yes	No
Pharmer ¹⁰	Ligand, complex	Substructure pattern, feature	Yes	Yes (GPLv2)
LigandScout ¹¹	Ligand, complex, apo	Substructure pattern, feature, molecular field	Yes	No
Catalyst ¹²	Ligand, complex, apo	Substructure pattern, feature, molecular field	Yes	No
MOE ¹³	Ligand, complex, apo	Substructure pattern, feature, molecular field	Yes	No
PHASE ¹⁴	Ligand, complex, apo	Substructure pattern, feature, molecular field	Yes	No
Pharao ¹⁵	Ligand	Substructure pattern	Yes	Yes (GPLv2)
UNITY ¹⁶	Ligand, complex	Substructure pattern, feature	Yes	No
Forge ¹⁷	Ligand	Molecular field	Yes	Free for PhD students
-	· ·	-		

Program	Scoring method	Provider	Program/web-tool
DiscoveryStudio	Overlay	Biovia (formerly Accelrys)	Program
LigandScout	Overlay	Inte:Ligand	Program
MOE	RMSD	Chemical Computing Group	Program
PHASE	RMSD	Schrödinger	Program
GASP	Overlay	Tripos	Program
DISCOTech	RMSD	Tripos	Program
Pharmer	RMSD	Camacho Lab	Program code free
PharmaGist	Overlay	Tel Aviv University	Web tool
QUASI	Overlay	DeNovo Pharmaceuticals	Program
AnchorQuery ^a	RMSD	Cacho and Dömling laboratories	Web-tool
ROCS ^b	Overlay	OpenEye	Program
USR ^b	Overlay	Istar	Web-tool

1) Schaller, D.; et al. Next generation 3D pharmacophore modeling. *WIREs Computational Molecular Science* **2020**, 10 (4), e1468. 2(Vuorinen, A.; Schuster, D., Methods for generating and applying pharmacophore models as virtual screening filters and for bioactivity profiling. *Methods* **2015**, 71, 113-134.

Common features finding

Ligand-based pharmacophore example

Shared model on 83 antagonists of fibrinogen receptor

Pharmacophore models obtained for clusters of compounds

Polishchuk, P. G. et al., Journal of Medicinal Chemistry 2015, 58, 7681-7694.

Pmapper: 3D pharmacophore descriptors

canonical quadruplet signature = (canonical graph signature, stereoconfiguration)

https://github.com/DrrDom/pmapper

Kutlushina, A. et al., Ligand-Based Pharmacophore Modeling Using Novel 3D Pharmacophore Signatures. *Molecules* **2018**, 23, 3094.

Common features finding

Alignment-free ligand-based pharmacophore modeling

https://github.com/meddwl/psearch

Kutlushina, A.; Khakimova, A.; Madzhidov, T.; Polishchuk, P., Ligand-Based Pharmacophore Modeling Using Novel 3D Pharmacophore Signatures. *Molecules* **2018**, 23 (12), 3094.

Alignment-free ligand-based pharmacophore modeling

https://github.com/meddwl/psearch

Kutlushina, A.; Khakimova, A.; Madzhidov, T.; Polishchuk, P., Ligand-Based Pharmacophore Modeling Using Novel 3D Pharmacophore Signatures. *Molecules* **2018**, 23 (12), 3094.

Alignment-free ligand-based pharmacophore modeling

XX 20

A2a (5OLZ)

Data Set	Number of Actives	Number of Inactives	Total Number of Compounds	
AChE	176 (pIC ₅₀ \ge 8)	1070 (pIC ₅₀ \leq 6)	1246	
CYP450 3A4	138 (pIC ₅₀ \geq 7)	548 (pIC ₅₀ \leq 5)	686	
A2a	293 (pKi/pKd/pIC ₅₀ \geq 7)	279 (pKi/pKd/pIC ₅₀ \leq 5)	574	Y VI
				-

Kutlushina, A. et al, Ligand-Based Pharmacophore Modeling Using Novel 3D Pharmacophore Signatures. *Molecules* **2018**, 23, 3094.

Structure-based & MD pharmacophore example

MD pharmacophores

Polishchuk, P. et al. Virtual Screening Using Pharmacophore Models Retrieved from Molecular Dynamic Simulations. *International Journal of Molecular Sciences* **2019**, 20, (23), 5834.

Pharmacophore: ligand profiling

Vuorinen, A.; Schuster, D., Methods for generating and applying pharmacophore models as virtual screening filters and for bioactivity profiling. *Methods* **2015**, 71, 113-134.

Pharmacophore: ligand profiling

Pharmacophore models

T. Steindl et al., J. Chem. Inf. Model., 46, 2146-2157 (2006)

Ligands

PharmMapper

PharmMapper Introduction Submit Job Check Job Get Result Help Doc

Step 1: Specify molecule file to perform calculation

Upload Query File	Please submit Tripos/mol2 or MDL/sdf V2000 file	Browse
	We DO NOT support sdf V3000 format file.	
Email Address	abc@example.com	
	We will send you an email when your job finished.	
Job Description	- Optional -	
	Discription and file name will both be displayed on the result page.	
	Please do not submit more than 10 jobs once !	
	Continue	

Xia Wang et al, PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. *Nucleic Acids Res.*, **2017**, 45, W356-W360.

PharmMapper

Result of 211114173050

Top 300 targets ranked by normalized fit score in descending order

1.mol2 -

Ligand: LIA							
R	ank	PDB ID	Target Name	Number of Features 🛉	Fit Score 🛉	Normalized Fit Score 	
+	1	ЗМАН	NONE	3	2.998	0.9994	
+	2	2CT7	RING finger protein 31	3	2.998	0.9993	
+	3	1 TOT	UPF0447 protein GK3416	3	2.998	0.9993	
+	4	114W	Mitochondrial replication protein MTF1	3	2.995	0.9984	
+	5	1EVY	Glycerol-3-phosphate dehydrogenase [NAD+], glycosomal	3	2.99	0.9967	
+	6	2KDD	Borealin	3	2.99	0.9967	
+	7	1XPP	DNA-directed RNA polymerase subunit L	3	2.981	0.9938	

Xia Wang et al, PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. *Nucleic Acids Res.*, **2017**, 45, W356-W360.

4D QSAR

Zankov, D. V. et al, QSAR Modeling Based on Conformation Ensembles Using a Multi-Instance Learning Approach. *Journal of Chemical Information and Modeling* **2021**, 61, 4913-4923.

Multi-instance learning

Artificial Intelligence 89 (1997) 31-71

Artificial Intelligence

Solving the multiple instance problem with axis-parallel rectangles

Received August 1994; revised July 1996

4D QSAR

Instance-Wrapper

Zankov, D. V. et al, QSAR Modeling Based on Conformation Ensembles Using a Multi-Instance Learning Approach. *Journal of Chemical Information and Modeling* **2021**, 61, 4913-4923.

Multiple-instance QSAR

Zankov, D. V. et al, QSAR Modeling Based on Conformation Ensembles Using a Multi-Instance Learning Approach. *Journal of Chemical Information and Modeling* **2021**, 61, 4913-4923.

MIL study: conformer and descriptor generation

175 data sets from ChEMBL

Kutlushina, A. et al. Ligand-Based Pharmacophore Modeling Using Novel 3D Pharmacophore Signatures. *Molecules* 2018, 23, 3094.

Pmapper: 3D pharmacophore descriptors

canonical quadruplet signature = (canonical graph signature, stereoconfiguration)

https://github.com/DrrDom/pmapper

Kutlushina, A. et al., Ligand-Based Pharmacophore Modeling Using Novel 3D Pharmacophore Signatures. *Molecules* **2018**, 23, 3094.

Multiple-instance QSAR

model	mean	median	top 1	top 2
3D/MI/Instance-Wrapper	0.524 ± 0.131	0.526	69	105
3D/MI/Bag-Attention	0.468 ± 0.161	0.474	12	57
2D/MorganFP/Net	0.464 ± 0.199	0.502	39	66
2D/PhysChem/Net	0.450 ± 0.144	0.443	17	37
2D/PharmFP/Net	0.382 ± 0.216	0.404	4	17
3D/SI/Net	0.024 ± 0.372	0.089	1	2

^aTable reports mean, standard deviations, and median of *R*_{test}². Top 1 is the number of cases where the model was the best. Top 2 is the number of cases where the model was the first- or second-best one.

Zankov, D. V. et al, QSAR Modeling Based on Conformation Ensembles Using a Multi-Instance Learning Approach. *Journal of Chemical Information and Modeling* **2021**, 61, 4913-4923.

MIL study: comparison between 2D, 3D and MIL models

Zankov, D. V. et al, QSAR Modeling Based on Conformation Ensembles Using a Multi-Instance Learning Approach. 34 Journal of Chemical Information and Modeling **2021**, 61, 4913-4923

MIL study: identification of "bioactive" conformers

Selected compounds had average RMSD of generated conformers > 2A relative to PDB structure

total PDB structures 3D/MI/Bag-AttentionNet lowest energy conformers docking (Vina) random choice

Experimental pKi: 6.10 3D/SI/Net pKi: 6.48, RMSD = 2.42 Å 3D/MI/Bag-AttentionNet pKi: 6.31 (attention weight: 0.83), RMSD = 1.70 Å

Experimental pKi: 7.42 3D/SI/Net pKi: 7.86, RMSD = 2.78 Å 3D/MI/Bag-AttentionNet pKi: 7.41 (attention weight: 0.59), RMSD = 1.55 Å

Zankov, D. V. et al, QSAR Modeling Based on Conformation Ensembles Using a Multi-Instance Learning Approach. 35 Journal of Chemical Information and Modeling **2021**, 61, 4913-4923

Conclusions

- + Universal representation of binding pattern
- + Qualitative output
- + Very fast screening
- + Scaffold hopping
- Structure-based models can be very specific
- Ligand-based models depend on conformational sampling