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QSAR  modeling workflow

D1 D2 D3 D4 D5 D6 … DN

1 0 9 0 11 1 … 1

4 0 1 0 0 0 … 1

0 0 0 0 0 4 … 6

0 2 3 6 0 0 … 3

… … … … … … … …

4 0 0 0 1 2 … 1

Structure Descriptors (features) Model

Encoding
(represent structure with 

numerical features)

Mapping
(machine learning)



Overall QSAR workflow

Input data

Bioassays
Databases

Preprocessing
Feature

engineering
Model

training
Model

validation

Classification
Regression
Clustering

Cross-validation
Bootstrap
Test set

Applicability 
Domain

Feature 
selection
Feature 
combination

Data 
normalization 
& curation

Feature 
extraction

Interpretation

å
-

=

j
j

i
i z

xxx '

3

1) a defined endpoint
2) an unambiguous algorithm
3) a defined domain of applicability
4) appropriate measures of goodness-of–fit, robustness and predictivity
5) a mechanistic interpretation, if possible

OECD principles for the validation, for regulatory purposes, of (Q)SAR models 



Step 1. Data collection

Scientific literature and patents
Databases (ChEMBL, PubChem, BindingDB, etc)

Traditionally modeled compounds should have the same mechanism of action, however 
using of complex non-linear machine learning method allows to model data sets with 
mixed or even unknown mechanism of action with reasonable accuracy.

Conditions may substantially influence the results of bioassays (change in temperature, 
activators, detectors, etc)

Units checking



Step 2. Data curation (normalization)



Step 2. Data curation (normalization)



Step 2. Data curation (normalization)
Removal of mixtures, inorganics, metalorganics, etc
Strip of salts, counterions, etc

Ionization, if necessary (at the particular pH level)
Chemotype normalization, resonance structure and tautomers

Duplicates removal
Manual checking
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Step 3. Descriptors: classification
Object type:

molecular descriptors (single molecules)
descriptors of molecular ensemble (mixtures, materials)
reaction descriptors (reactions)

Descriptor origin:
calculated from the structure
empirical (Hammet constants, lipophilicity chemical shifts in NMR, etc)

Locality:
local (atom charge)
global (molecular weight, molecular volume, lipophilicity, etc)

Dimensionality:
1D (number of methyl groups, molecular weight, etc)
2D (topological indices, fragmental descriptors)
3D (molecular volume, quantum chemical descriptors)
4D (based on a set of conformers)

Calculation method:
physico-chemical (lipophilicity, etc)
topological (invariants of molecular graph, Randic index, Wiener index, etc)
fragmental (fingerprints, etc)
pharmacophore
spatial (moment of inertia, etc)
quantum-chemical (energy of HOMO/LUMO, etc)
etc. R. Todeschini and V. Consonni Handbook of Molecular Descriptors, 2008



Atom-centric (augmented atoms) fingerprints
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Generate substructures starting from each atom and considering all its neighbors up to 
the specified distance (radius or diameter).

Morgan fingerprints, Extended-connectivity fingerprints (ECFP). Functional-class 
fingerprints (FCFP) , etc.
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Rogers, D. & Hahn, M. Extended-Connectivity Fingerprints. J. Chem. Inf. Model. 50,  742-754 (2010)



Atom-centric (augmented atoms) fingerprints



Fingerprints

Each molecule has variable length set of substructures – variable length fingerprints
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N-C-C C-C-O C-C=O C-C-C C:C:C C:C:N C:N:C

1 1 1 0 0 0 0

1 1 1 1 0 0 0

0 0 0 0 1 1 1

2-bond sequences

N



Hashed fingerprints
Have fixed length (usually 512, 1024 or 2048 bits)

H2N
OH

O

hash code

N-C-C C-C-O C-C=O C-C-C C:C:C C:C:N

13823 9740 37278 28478 874 283764

0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 0 1 1

pseudo-random
number generator

fixed-length bit string

Each substructure activates several bits (usually 4-5) to avoid collisions and produce bit 
string of enough density

Missing bits mean that certain substructures are not presented, Active bits mean that 
certain substructure may be present (but due to possible collisions one cannot be sure)



Step 4. Feature processing
Feature transformations:

linear and non-linear scaling

Feature combinations:

range (0; 1)
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Step 5. Model building
Unsupervised

clustering

Supervised
  Regression Classification

Multiple linear regression (MLR)

Partial linear regression (PLS) Logistic regression

Gaussian Process (GP) Naïve Bayes (NB)

Decision trees (DT)

Support vector machine (SVM)

Neural nets (NN)

Random forest (RF)

k-Nearest neighbors (kNN)
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Simulated data set of actives and inactives with two descriptors – MW and logP

logP

M
W

Decision tree



IF 
      logP >= 3.2 
   AND 
     MW >= 255 
THEN
    compound is 
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logP < 3.2
YES NO

MW < 358

YES NO

MW < 255

YES NO

Decision tree
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Initial dataset

Bootstrap
sample

Bootstrap
sample

Bootstrap
sample

CART tree1 CART tree2 CART tree3

Combined prediction

…
Random 
feature 
subspace in 
each node

Random Forest



Consensus (ensemble) modeling



Step 6. Validation

Test set (usually 20-25% of the work set)

1.2 1.3 1.7 2.0 2.2 2.8 3.1 3.2 3.2 3.6 4.7 5.7 5.8 6.4 7.2 8.1 9.0 9.1 9.2working set

random test set 1.2 1.3 1.7 2.0 2.2 2.8 3.1 3.2 3.2 3.6 4.7 5.7 5.8 6.4 7.2 8.1 9.0 9.1 9.2

stratified 
test set 1.2 1.3 1.7 2.0 2.2 2.8 3.1 3.2 3.2 3.6 4.7 5.7 5.8 6.4 7.2 8.1 9.0 9.1 9.2

Cross-validation

1.2 1.3 1.7 2.0 2.2 2.8 3.1 3.2 3.2 3.6 4.7 5.7 5.8 6.4 7.2 8.1 9.0 9.1 9.2working set

1.2 1.3 1.7 2.0 2.2 2.8 3.1 3.2 3.2 3.6 4.7 5.7 5.8 6.4 7.2 8.1 9.0 9.1 9.2

1.2 1.3 1.7 2.0 2.2 2.8 3.1 3.2 3.2 3.6 4.7 5.7 5.8 6.4 7.2 8.1 9.0 9.1 9.2

1.2 1.3 1.7 2.0 2.2 2.8 3.1 3.2 3.2 3.6 4.7 5.7 5.8 6.4 7.2 8.1 9.0 9.1 9.2

fold 1

fold 2

fold 3

predictions of different folds are combined to calculate the final predictive measure



Step 6. Measures of predictive ability of models
Classification Confusion matrix

Predicted

positive class 
(1)

negative class 
(0)

observed

positive class 
(1)

true positive 
(TP)

false negative
(FN)

negative class 
(0)

false positive 
(FP)

true negative 
(TN)

[-1; 1]

[0; 1]

[0; 1]

[0; 1]

[0; 1]

[0; 1]
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Step 6. Measures of predictive ability of models
Regression

Determination coefficient

Root mean squared error

Mean absolute error
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Step 7. Applicability domain (AD)
Extrapolation to very distant objects is dangerous

There is a need to define the domain where our model is reliable (models are not universal!)

Only compounds which are similar to the training set compounds should be included in 
applicability domain of the model. One should estimate similarity of new compounds (test 
set, etc) to the training set compounds.



Step 7. Applicability domain (AD) measures
Bounding box - based on descriptor range

Desc_1

Desc_2

AD
• internal regions are usually empty, 
especially if the number of descriptors is big
• it doesn’t take into account descriptor 
correlation

Distance from training set compounds in descriptor space

Desc_1

Desc_2
Distance from training set compounds in model space

Model_1

Model_2

Requires several models (e.g. consensus 
model, bootstrap models)



Step 8. Interpretation of QSAR models

Why interpretation is important?

Found active/inactive patterns which can be used for 
optimization of compound properties

Retrieve trends of stricture-activity relationships which 
can be used for knowledge-base model validation

Regulatory purposes



Step 8. Interpretation of QSAR models

Principles and issues

Model should be predictive

Interpretation is valid within the applicability domain of 
the model

Interpretation results are data set dependent



Step 8. Interpretation of QSAR models

1/C = 4.08π – 2.14π2 + 2.78σ + 3.38

π = logPX – logPH
σ - Hammet constant

plant growth inhibition activity of 
phenoxyacetic acids 

electronic factorsrate of penetration of membranes 
in the plant cell

Hansch equation
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R is H or CH3; 
X is Br, Cl, NO2 and 
Y is NO2, NH2, NHC(=O)CH3

Inhibition activity of compounds 
against Staphylococcus aureus 

Act = 75RH – 112RCH3 + 84XCl – 16XBr – 26XNO2 + 123YNH2 + 18YNHC(=O)CH3 – 218YNO2

Free-Wilson models



Step 8. Interpretation of QSAR models
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A B C

Activitypred(A) Activitypred(B) Contribution(C)
f(A) = x f(B) = y W(C) = x – y

Polishchuk, P. G.; Kuz'min, V. E.; Artemenko, A. G.; Muratov, E. N. Universal Approach for Structural 
Interpretation of QSAR/QSPR Models. Molecular Informatics 2013, 32, 843-853

Universal approach



Step 8. Interpretation of QSAR models



Step 8. Interpretation of QSAR models



Interpretation results of valid predictive models should 
converge independent of:

interpretation approach
descriptors
machine learning method

All models are interpretable but not all end-points

Step 8. Interpretation of QSAR models
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