QSAR modeling

Guzel Minibaeva

Ph.D. student

Institute of Molecular and Translational Medicine
Faculty of Medicine and Dentistry
Palacky University



QSAR modeling workflow
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Overall QSAR workflow
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OECD principles for the validation, for regulatory purposes, of (Q)SAR models

1)
2)
3)
4)
5)

a defined endpoint

an unambiguous algorithm

a defined domain of applicability
appropriate measures of goodness-of—fit, robustness and predictivity
a mechanistic interpretation, if possible



Step 1. Data collection

Scientific literature and patents
Databases (ChEMBL, PubChem, BindingDB, etc)

Traditionally modeled compounds should have the same mechanism of action, however
using of complex non-linear machine learning method allows to model data sets with
mixed or even unknown mechanism of action with reasonable accuracy.

Conditions may substantially influence the results of bioassays (change in temperature,
activators, detectors, etc)

Units checking



Step 2. Data curation (normalization)

J. Med. Chem. 2000, 43, 3233—3243 Option

GRid-INdependent Descriptors (GRIND): A Novel Class of
Alignment-Independent Three-Dimensional Molecular Descriptors

Manuel Pastor,” Gabriele Cruciani,*' Iain McLay,’ Stephen Pickett,5 and Sergio Clementi’

Laboratory on Chemometrics, Department of Chemistry, University of Perugia, Via Elce di Sotto 10, 06123 Perugia, Italy,
and CADD Department, Rhone-Poulenc Rorer, Dagenham, Essex RM10 7XS, U.K.

Table 2. Series of 10 Glucose Analogue Inhibitors of Glycogen
Phosphorylase

OH
0
IR
HO Ra
—
substituent at C1 position
0. Ra Rf pKi (mM) strange units

1 OH H 2.77
2 C(=0O)NH: H .
3 H C(=0O)NH: 3.36
4 H COOCHz3 2.55
5 H CH2CN 2.05
6 H NHC(=0)NH: 3.85
7 C(=O)NH: NHCOOCHz3 4.80



Step 2. Data curation (normalization)

Data from NCI60
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Step 2. Data curation (normalization)

Removal of mixtures, inorganics, metalorganics, etc

Strip of salts, counterions, etc
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lonization, if necessary (at the particular pH level)

Chemotype normalization, resonance structure and tautomers
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Duplicates removal

Manual checking



Step 3. Descriptors: classification

Object type:

molecular descriptors (single molecules)

descriptors of molecular ensemble (mixtures, materials)

reaction descriptors (reactions)
Descriptor origin:

calculated from the structure

empirical (Hammet constants, lipophilicity chemical shifts in NMR, etc)
Locality:

local (atom charge)

global (molecular weight, molecular volume, lipophilicity, etc)
Dimensionality:

1D (number of methyl groups, molecular weight, etc)

2D (topological indices, fragmental descriptors)

3D (molecular volume, quantum chemical descriptors)

4D (based on a set of conformers)
Calculation method:

physico-chemical (lipophilicity, etc)

topological (invariants of molecular graph, Randic index, Wiener index, etc)

fragmental (fingerprints, etc)

pharmacophore

spatial (moment of inertia, etc)

quantum-chemical (energy of HOMO/LUMO, etc)

etc. R. Todeschini and V. Consonni Handbook of Molecular Descriptors, 2008



Atom-centric (augmented atoms) fingerprints

Generate substructures starting from each atom and considering all its neighbors up to
the specified distance (radius or diameter).

Morgan fingerprints, Extended-connectivity fingerprints (ECFP). Functional-class

fingerprints (FCFP) , etc.
O
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Rogers, D. & Hahn, M. Extended-Connectivity Fingerprints. J. Chem. Inf. Model. 50, 742-754 (2010)




Atom-centric (augmented atoms) fingerprints

identical fingerprints

Morgan fingerprints
radius=2
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Each molecule has variable length set of substructures — variable length fingerprints

2-bond sequences
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Hashed fingerprints

Have fixed length (usually 512, 1024 or 2048 bits)

OH
HzN/ﬁ(
o

hash code 13823 9740 37278 28478 283764
pseudo-random
number generator
0|0]0

fixed-length bit string

Each substructure activates several bits (usually 4-5) to avoid collisions and produce bit
string of enough density

Missing bits mean that certain substructures are not presented, Active bits mean that
certain substructure may be present (but due to possible collisions one cannot be sure)



Step 4. Feature processing

Feature transformations:
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Step 5. Model building

Unsupervised
clustering

Whrel Lo

Supervised

Multiple linear regression (MLR)

Partial linear regression (PLS) Logistic regression
Gaussian Process (GP) Naive Bayes (NB)
Decision trees (DT)
Support vector machine (SVM)
Neural nets (NN)
Random forest (RF)

k-Nearest neighbors (kNN)



Decision tree

Simulated data set of actives and inactives with two descriptors — MW and logP
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Decision tree
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Random Forest

[ Initial dataset }
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Consensus (ensemble) modeling

Data set
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Support )
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vector
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machine
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Combined

o averaging/major voting
predictions

Models should be not correlated
(one may use different combination of descriptors and machine learning methods)



Step 6. Validation

Test set (usually 20-25% of the work set)

working set 1.211.3|1.7|2.0|12.2|12.8|3.1|3.2|3.2|3.6|4.7|5.7|5.8|6.4|7.218.1|9.0|9.1|9.2

random test set |1.2(1.3(1.7|2.0/2.2(2.8(3.1|3.2|3.2(3.6|4.7|5.7|5.8(6.4(7.2|8.1|9.0(9.1|9.2

stratified
test set

1.211.3|1.7|12.0|2.2|12.8|3.1|3.2|3.2|3.6|4.7|5.7|5.8|6.4|7.218.119.0|9.1|9.2

Cross-validation

working set 1.211.3|1.7|2.0|12.2|12.8|3.1|3.2|3.2|3.6|4.7|5.7|5.8|6.4|7.218.1|9.0|9.1|9.2
fold 1 1.211.3|1.7|12.0|2.2|12.8|3.1|3.2|3.2|3.6|4.7|5.7|5.8|6.4|7.218.119.0|9.1|9.2
fold 2 1.211.3|1.7|2.0|12.2|12.8|3.1|3.2|3.2|3.6|4.7|5.7|5.8|6.4|7.218.119.0|9.1|9.2
fold 3 1.211.3|1.7|2.0|12.2|12.8|3.1|3.2|3.2|3.6|4.7|5.7|5.8|6.417.218.119.0|9.1|9.2

predictions of different folds are combined to calculate the final predictive measure



Step 6. Measures of predictive ability of models

Classification

Confusion matrix

Predicted

positive class  negative class

(1) (0)

positive class

true positive
(TP)

true negative
(TN)

1
TP+TN [0; 1] observed !
Accuracy = ! negative class
N
(0)
Specificity = TN [0; 1]
peciicity = TN+FP
TP
. . - : O; 1
Sensitivity TP+FN [ ]
Specificity+Sensitivit )
Balanced accuracy = P yz 4 [0; 1]
K __Accuracy —Baseline (0; 1]
appa = 1 —Baseline ’
_ (TN+FP)(TN+FN)+(TP+FN)(TP+FP)
Baseline =
N2
TP*TN+FP*FN
MCC = [-1; 1]

V(TP+FP)(TP+FN)(TN+FP)(TN+FN)




Step 6. Measures of predictive ability of models

Regression

Determination coefficient

Zi(yi,pred _ yi,obs)2
Zi(yi,pred - yobs)z

Q?=1-

Root mean squared error

RMSE = Zi(yi,pred _ yi,Obs)Z
N -1

Mean absolute error

N
1
MAE = NZlyi,pred - Yi,obsl
=1



Step 7. Applicability domain (AD)

Extrapolation to very distant objects is dangerous

My HOBBY: EXTRAPOLATING

AS YOU CAN SEE, BY LATE

NEXT MONTH YOU'LL RAVE

OVER FOUR DOZEN HUSBANDS,
) BETTERGET A

BULK RATE ON
WEDDING (CAKE.

There is a need to define the domain where our model is reliable (models are not universal!)

Only compounds which are similar to the training set compounds should be included in
applicability domain of the model. One should estimate similarity of new compounds (test

set, etc) to the training set compounds.




Step 7. Applicability domain (AD) measures

Bounding box - based on descriptor range

* internal regions are usually empty, | o ¢
especially if the number of descriptors is big . ¢ :)/ AD
. , . . Desc_1 : ° |
* it doesn’t take into account descriptor . o
correlation | .
Desc_2

Distance from training set compounds in descriptor space

()
Desc_1 ° A

Y

Desc_2
Distance from training set compounds in model space A
Requires several models (e.g. consensus ° o ®
model, bootstrap models) . o0
Model 1 o

Y

Model 2



Step 8. Interpretation of QSAR models

Why interpretation is important?

Found active/inactive patterns which can be used for
optimization of compound properties

Retrieve trends of stricture-activity relationships which
can be used for knowledge-base model validation

Regulatory purposes



Step 8. Interpretation of QSAR models

Principles and issues

Model should be predictive

Interpretation is valid within the applicability domain of
the model

Interpretation results are data set dependent



Step 8. Interpretation of QSAR models

plant growth inhibition activity of
/ phenoxyacetic acids

1/C = 4.081T — 2.141%2 + 2.780 + 3.38 Hansch equation

P ™

rate of penetration of membranes electronic factors
in the plant cell

T = logPx — logPy
o - Hammet constant

Free-Wilson models
Inhibition activity of compounds

X R " against Staphylococcus aureus
Y OH
R is H or CH3;
NH, Xis Br, Cl, NO, and
OH Y is NOZ, NH2, NHC(=O)CH3
OH O OH O o)

Act = 78Ry — 112RcH3 + 84Xc) — 16Xg; — 26Xno2 + 123YNH2 + 18Y NHe(=0)cHz — 218Y o2



Step 8. Interpretation of QSAR models

Universal approach

Activity, .4(B) Contribution(C)

Polishchuk, P. G.; Kuz'min, V. E.; Artemenko, A. G.; Muratoyv, E. N. Universal Approach for Structural
Interpretation of QSAR/QSPR Models. Molecular Informatics 2013, 32, 843-853



Step 8. Interpretation of QSAR models

5-fold external cross validation results

Descriptors Algorithm Balanced Accuracy
. RF 0.817
SIRMS
SVM 0.800
Dragon RF 0.816
2 SVM 0.793
18
8 0.5 models
8 B sirvs+RF
,é . ' ‘ . I l o . " SIRMS+SVM
= il . e .Dragon+RF
8 Dragon+SVM
051 Reduced mutagenicity
o
toxicophores detoxicophores
O30 L0 0 R@ LR O
N 0®60®d§ . ro"’e)o Og\ \él/ *?‘O \'eo & \b\'e 60% o & ‘lzéz\
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Fragments

Polishchuk P.G. et al. Molecular Informatics, 2013, 843-853




Step 8. Interpretation of QSAR models
CHEMIC

CHEMICAL INFORMATION
AND MODELING

@ Cite This: J. Chem. Inf. Model. 2017, 57, 2618-2639 pubs.acs.org/jcim

Interpretation of Quantitative Structure—Activity Relationship
Models: Past, Present, and Future

Pavel Polishchuk™*

Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in
Olomouc, Hnévotinska 1333/5, 779 00 Olomouc, Czech Republic

Table 7. Applicability of Interpretation Approaches to QSAR Models

Descriptors
interpretable non-interpretable
regression coefficients
(Hansch, Free-Wilson)
regression coefficients,
X-and Y-scores,
variable importance

Models

linear regression

PLS (OPLS,
O2PLS. ewc)

decision trees logical rules
NN variable impnnar‘\u: based on \\'Fights and biases. universal structural
variable contributions interpretation,
RF variable impn'nancc has«;d on permutation, similqrit)‘ maps,
variable contributions computational matched
NN, SVM, RF rule extraction molecular pairs and series

partial derivatives,
variable importance based on permutation,

any model .. .
sensitivity analysis

including
CONSensus ones

. model — descriptors — (structure)
Interpretation
or model — structure

aradigm
P & model — structure




Step 8. Interpretation of QSAR models

Interpretation results of valid predictive models should
converge independent of:

interpretation approach
descriptors
machine learning method
All models are interpretable but not all end-points



Overall QSAR workflow
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