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Quote of the day
“An amount of intelligence in a typical drug discovery project is so low 
that the some artificial intelligence would not harm” 

Founders of Receptor.AI in 2021 ©

Expectations: Reality:



Plan of the talk
1. Why modern drug discovery struggles

○ A crash course of upsetting the investors

2. Can AI make it struggle a bit less? 
○ A short guide for giving hope to upset 

investors

3. Some shameless self-promotion
○ Investors don’t trust this anyway



Modern drug discovery struggles badly
Traditional methods 
stagnate 

● The cost per drug 
increases

● Development time 
doesn’t improve

● Failure rate is 
persistently >90%

● Only 6.3% composite 
success rate in 2022



Are we cursed? (Let’s upset the investors…)

Computational resources become cheaper but this doesn’t help much…



Eroom’s law explained (kind of)
● The 'better than the Beatles' problem: very hard to beat established 

treatments to the extent that it’s economically viable.
● The 'cautious regulator' problem: level of required evidence in trials 

become a burden.
● The 'throw money at it' tendency: The tendency to add excessive 

resources to R&D. One woman gives birth in 9 month. Let hire 9 women 
to give a birth in 1 month!

● The 'basic research–brute force' bias: The tendency to overestimate the 
ability of advances in basic research and brute force screening methods. 
Late stages continue to fail despite huge amounts of obtained data.



Cat AI beat the Eroom’s law?
● AI is generally considered as a rescue

○ Breaking the Eroom’s law
○ 60% more drugs per $1B by 2030
○ General paradigm change 

● The 'better than the Beatles' problem:
○ Cutting the R&D cost to the extent that even moderate improvement will pay for itself.
○ Finding fundamentally different modalities and targets.

● The 'cautious regulator' problem:
○ Predicting the unfavourable clinical outcomes very early to cut futile projects.
○ Automate and streamline the trials.

● The 'throw money at it' tendency:
○ Better throw money at us :)

● The 'basic research–brute force' bias:
○ Making multi-domain predictive models including all available big data and hope that 

this will reduce the % of late stage failures



Can AI save us? (Let’s give some hope to upset investors…) 



Problems AI can solve
The problem of the context 
gaps:

Multiple knowledge domains 
don’t play together well

● Chemistry
● Biology
● Simulations
● Bioinformatics
● Population omics
● Patient data

Intractable amount of 
data:

● 50+B chemical 
spaces

● 40+ ADMET 
endpoints

● High-throughput 
readouts (HTS, 
DEL, RNA display, 
Phage display,...)

● Trials outcomes

Workflow construction:

● Which in silico 
methods to use?

● Which experiments to 
employ?

● Which cellular and 
animal models?

● What is the signal to 
stop?

Traditional approach: We need to develop drugs quickly, reliably and 
cheaply. Choose any two of these.

AI approach: Why not all at once?



Applications of AI in drug discovery
● Target identification

○ Population omics
○ Knowledge graphs
○ Unstructured data scraping

● Early discovery
○ Hit discovery to lead optimization: AI virtual screening, ADMET prediction, QSAR.

● Late discovery
○ Formulation optimization, 
○ IND and clinical studies outcome prediction
○ Clinical study planning and monitoring

● Drug repurposing
○ Off-target search
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Target Identification: AI-curated knowledge graphs

● Multiparametric graph databases relating diseases, pathways, omics, proteins, drugs, modalities, indications, etc…
● Scraped automatically from all structured databases + LLM-based scraping of papers, patents, clinical study 

reports.
● Example questions to ask: Find all protein targets associated with immuno oncology that has approved MABs but lack 

small molecules approved or on clinical trials 2+.



AI-curated knowledge graphs
● Usage of AI:

○ Creation and continuous 
updating of the graph

○ Generation of queries and 
NLP transformation of 
responses

● Open questions:
○ Latest LLMs often provide 

similar performance directly in 
human language (they 
already contain most of 
information + can do the 
search)

○ Limited amount of public data 
→absence of competitive 
advantage.

○ Closed databases of big 
pharma are “new oil” for 
them.



AI in early drug discovery
● Protein structure prediction

○ AlphaFold, Rosetta
● Chemical space generation

○ Molecular generators (Chemistry42, Iktos)
○ Scaffold hopping
○ Substituents generation

● Ligand pose prediction
○ DiffDock, UniMol, ArtiDock

● Non-AI generative techniques
○ MD for protein conformational ensembles 

generation
○ Artificial binding pockets for AI data 

augmentation



AI virtual screening



AI virtual screening

● Very fast (2-3 order of magnitude faster) initial filtration of the chemical 
space

● Self-balancing: many known compounds →ligand-based approach; few 
compounds →structure based approach. 

● Separate models for protein tier lists (depending on the number of known 
structures and ligands).

● 70+% accuracy on “favourable” targets.
● Early assessment of ADMET →fewer toxicity failures



ADMET prediction



ADMET multi-task learning

● Multi-task ADMET model: trained on multiple endpoints with “cross-dissemination” between them.
● There are groups of tasks sharing the data to more or less extent



MultiTask model training



Case study: membrane permeability
● MolMeDb data for

○ Membrane 
permeability

○ Membrane 
partitioning

● Receptor.AI 
MultiTask ADMET 
NN architecture

● AutoML automatic 
featurization



Case study: membrane permeability

This is too good to be true…



FAIR data? Ha-ha! :)
● The LogK data collected in MolMeDb appeared to be not the raw data but 

the predictions 
○ ALOGPS 2.1: an ancient (2002) Associative Neural Network (ASNN) approach.

● The raw data were from PHYSPROP database:
○ No longer publicly available from ~2020, all links are just broken.
○ Claimed to be moved to EPI Suite software from US Environmental Protection Agency.
○ EPI Suite docs mention the same broken links.
○ Binary .db files in the installation are not readable (undocumented proprietary format).

● Data archeology:
○ A paper from 2017 (10.1021/acs.jcim.6b00625) used PHYSPROP (still available back then) to 

make a curated subset of data and to retrain the models →curated subset still public!
○ Initial PHYSPROP had tons of issues (erroneous structures, inconsistencies among the 

chemical names)
○ In curated set: 81 invalid SMILES, 236 too small, 93 mixtures, 42 organometallic, 22 bad 

valences, 1 duplicate.
○ Remaining 13732 compounds.

https://doi.org/10.1021%2Facs.jcim.6b00625


FAIR data? Ha-ha! :)

❌ Findable 
❌ Accessible 
❌ Interoperable 
❌ Reusable

Nice job, US Environmental 
Protection agency! 😉



Membrane permeability: corrected

0.942             0.945

● Model retrained 
on curated raw 
data

● Now it’s 
reasonable!

● Slightly better than 
existing model 
(~0.93)



TDC benchmarks: ADMET AI models open competition
● TDC open 

benchmarks set 
https://tdcommons.ai 

○ 22 endpoints
○ Public leaderboards
○ Receptor.AI is not 

officially on TDC yet
● We are overall the 

best on TDC metrics
● Many endpoints are 

the absolute best
● Official participation 

planned in spring 
2024

https://tdcommons.ai


AI docking
● AI models trained on existing protein-ligand complexes.

○ ~10-20k high quality complexes only
○ Not physics-based, force field agnostic

● SMILE or 3D conformer + binding pocket as an input, binding pose as 
an output.

○ May produce distance matrix or point in dihedral space + post-processing to the 
pose

● Various representations of protein (AA, residue level, graph, distance 
matrix, etc.)

● Flexible balance between speed and accuracy



The problem of data with protein-ligand complexes
● There is a limited number of 

experimentally determined 
protein–ligand complexes

○ Number of all complexes (X-ray, Cryo-EM, 
NMR): < 20k

○ Hi-quality complexes with binding affinity 
annotations: ~10k

● Only 1655 ligands present in >1 
complexes

● ~1500 protein bind to 80% of all ligands
● ~100 protein families represent 60% of 

all data
● Very limited and skewed dataset for ML!

Statistics of PDBbind database



Data augmentation technique
● Take the statistical distributions of interactions in real complexes.
● Generate artificial “binding pockets” around real ligands following these 

distributions.
● Mix artificial pockets to real ones for model training at different 

proportions.
● Assumed that all major non-bond interactions are present in 

experimental data but their combinations are not adequately sampled.
● Augmented data teaches the model to recognize corner cases and 

combinatorial variety of interactions that are absent in the 
experimental training set.



Data augmentation: the details

● Reasonable correspondence of 
distributions

● Potential of improvement at the 
cost of model training time

● Potential to add explicit ions and 
cofactors

Hydrophobic H-bonds

DOI: 10.1039/D3RA08147H

https://doi.org/10.1039/D3RA08147H


ArtiDock: next gen ligand binding pose prediction
● Small model based on proprietary lightweight GNN architecture

○ Fast training and inference.
● Includes only the binding pocket

○ Less structural noise.
○ Much smaller model.

● Augmenting limited data on protein-ligand complexes with artificial 
pockets

○ Algorithmic technique for generating “fake” pockets around diverse real ligands.
○ Mimics statistical distributions of various non-bond interactions from experimental 

pockets.
○ Provides much more combinations of interactions than available in experimental pockets.

● Ability to integrate the protein dynamics
○ Incorporation of processed MD trajectories



ArtiDock performance: Astex dataset
● Astex is a standard 

dataset for docking 
benchmarks

● An older set created 
before the AI hype

● Considered not 
particularly 
challenging for AI 
methods



ArtiDock performance: PoseBusters dataset

PoseBusters dataset
● DOI: 10.1039/D3SC04185A 
● Includes multiple structure quality metrics beyond RMSD
● Designed to ashame AI docking
● Ashamed by the next-gen AI docking 🙂

PoseBusters versions
● V1 was made public in 2023 in the preprint
● V3 published and peer reviewed
● V3 is adjusted in favor of conventional docking and 

against AI even more (artificial bias)
● AI method still pass it 🙂

https://doi.org/10.1039/D3SC04185A


ArtiDock performance
● Outperforms all ML methods
● Comparable to conventional 

docking
● Faster than all of them



Detailed comparison with Glide and UniMol
● PB-Valid scores 

dependence on RMSD 
cutoff

○ ArtiDock and Glide: 
increase

○ Uni-Mol: constant
● Absolute PB-Valid scores:

○ ArtiDock and Glide: 
comparable

○ Uni-Mol: low
● Scores: ArtiDock ~ Glide
● Speed: ArtiDock >> Glide
● Uni-Mol prioritizes RMSD 

but fails miserably on 
PB-Valid



Conclusions
● AI drug discovery techniques are here 

to stay
● Pharma companies adoption 

increases
● Data mining and analysis seems to be 

dominated by LLMs
● Progressive substitution of the 

“physics-based techniques” by “data 
driven” ones (will docking finally die 
for good?)

● Data is a new oil (but nobody wants 
to collect and curate it)




