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Quote of the day

“An amount of intelligence in a typical drug discovery project is so low
that the some artificial intelligence would not harm”

Founders of Receptor.Al in 2021 ©

Expectations: Reality:




Plan of the talk

1. Why modern drug discovery struggles THIS 15 YOUR MACHINE LEARNING SYSTEM?
o A crash course of upsetting the investors YOP! YOU POUR THE DATA INTO THIS BIG
. . PILE OF LINEAR ALGEBRA, THEN COLLECT
2. Can Al make it struggle a bit less? THE ANSLIERS ON THE OTHER SIDE.
o Ashort guide for giving hope to upset WHAT IF THE ANSLERS ARE WRONG? )
nvestors , JUST STIR THE PILE UNTIL
3. Some shameless self-promotion THEY START LOOKING RIGHT.

o Investors don't trust this anyway




Modern drug discovery struggles badly

Cycle time
% Cost per NME
Probability of success

Target Compound
validation screening
~ 1.5 year ~ 1.5 year

~3% ~6%

>10,000
candidates

Lead

optimization

~1.5 year
~17%

~250
candidates

Pre-clinical

et Phase 1
~1year ~1.5year

~T7% ~15%
~66.4%

candidates

Pre-clinical test

Phase 11 Phase 1T Appraval
to launch
~2.5 year ~2.5 year ~ 1.5 year
~21% ~26% ~5%
~48.6% ~59%

Phase Il & Phase 111
Phase I

Dose, Efficacy, Toxicity

PK, Dose escalation, Toxicity

SAR, Drug-like properties, Solubility

Permeability, ADME, Plasma PK

Lead optimization

Compound screening

Target validation

Efficacy, Toxicity

Visual screening, HTS

Disease models, Target identification, Target validation

Traditional methods

stagnate

® The cost per drug
increases

® Development time

doesn’t improve
Failure rate is
persistently >90%
Only 6.3% composite
success rate in 2022




Are we cursed? (Let’s upset the investors...)

$ 1B R&D used to yield 0.6
0 O | drugs

10°8
Computations Drugs per $ 1B
per kWh R&D spent
10712
10M5] 1100
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@® Eroom’s Law: Drug discovery is becoming slower and more expensive over time
@ Moore’s Law: Computing power becomes faster and less expensive over time

Computational resources become cheaper but this doesn't help much...




Eroom’s law explained (kind of)

The 'better than the Beatles' problem: very hard to beat established
treatments to the extent that it's economically viable.

The 'cautious regulator' problem: level of required evidence in trials
become a burden.

The 'throw money at it' tendency: The tendency to add excessive
resources to R&D. One woman gives birth in 9 month. Let hire 9 women
to give a birth in 1 month!

The 'basic research-brute force' bias: The tendency to overestimate the
ability of advances in basic research and brute force screening methods.
Late stages continue to fail despite huge amounts of obtained data.



Cat Al beat the Eroom’s law?

e Alis generally considered as a rescue
o Breaking the Eroom's law
o  60% more drugs per $1B by 2030
o General paradigm change
e The 'better than the Beatles' problem:
o Cutting the R&D cost to the extent that even moderate improvement will pay for itself.
o Finding fundamentally different modalities and targets.
e The 'cautious regulator' problem:
o  Predicting the unfavourable clinical outcomes very early to cut futile projects.
o Automate and streamline the trials.
e The 'throw money at it' tendency:
o Better throw money at us :)
e The 'basic research-brute force' bias:

o Making multi-domain predictive models including all available big data and hope that
this will reduce the % of late stage failures



Can Al save us? (Let’s give some hope to upset investors...)

THE INFLUENCE OF Al

$0.93B will be saved on each drug

60% more drugs per $1B

0 0
10°8 1
Computations Drugs per $ 1B
per kKkWh 1012 10 R&D spent
1015 100
1950 1960 1970 1980 1990 2010 2030

® Eroom’s Law @® Moore’s Law




Problems Al can solve

The problem of the context Intractable amount of Workflow construction:
gaps: data:

_ _ . e Whichinsilico
Multiple knowledge domains e 50+B chemical methods to use?
don't play together well spaces . .

| e 40+ ADMET e Which experiments to

o Chemistry endpoints employ?
o g,ﬂolgayt_ons e High-throughput e Which cellular and
e Simulati readouts (HTS i

- . ' animal models?
e Bioinformatics DEL, RNA display, hat is the sienal
e Population omics Phage display;,...) e Whatis the signal to
e Patient data e Trials outcomes stop?

Traditional approach: We need to develop drugs quickly, reliably and
cheaply. Choose any two of these.

Al approach: Why not all at once?



Applications of Al in drug discovery

e Target identification
o Population omics
o Knowledge graphs
o Unstructured data scraping
e Early discovery
o Hit discovery to lead optimization: Al virtual screening, ADMET prediction, QSAR.
e Late discovery
o Formulation optimization,
o IND and clinical studies outcome prediction
o  Clinical study planning and monitoring
e Drugrepurposing
o Off-target search
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Target Identification: Al-curated knowledge graphs

Multiparametric graph databases relating diseases, pathways, omics, proteins, drugs, modalities, indications, etc...
Scraped automatically from all structured databases + LLM-based scraping of papers, patents, clinical study

reports.
Example questions to ask: Find all protein targets associated with immuno oncology that has approved MABs but lack

small molecules approved or on clinical trials 2+.




Al-curated knowledge graphs

e Usage of Al:
o Creation and continuous
updating of the graph >
o Generation of queries and
NLP transformation of % Dacisian making’: { AL et Lt orcestates J

res po nses increases success rate the workflow at each stage

Human selects
the drug candidate

. . by up to 400% i
e Open questions:
o Latest LLMs often provide
similar performance directly in 2. Result analysis *
mitigates 80% of human bias in chemical, Al-consensus function ranks candidates
h U m a n |a ngu age (th ey biological, and medical contexts : while considering the disease biology
already contain most of
. . 1.F dati A The prediction of 100+ disease-related biological parameters
information + can do the Bt : ,
R e . e s Platform with ready-to-use computational workflows for
sea rCh) bislogicaily ralevant '+ different targets, indications and modalities
o Limited amount of public data predictions |
—absence of competitive
advantage.

o Closed databases of big
pharma are “new oil” for
them.



Al in early drug discovery

e Protein structure prediction
o AlphaFold, Rosetta
e Chemical space generation

o Molecular generators (Chemistry42, lktos) -
o Scaffold hopping

o Substituents generation v 2 el [
e Ligand pose prediction - .
o DiffDock, UniMol, ArtiDock LIS
- W

e Non-Al generative techniques
o MD for protein conformational ensembles
generation
o Artificial binding pockets for Al data
augmentation




Al virtual screening

Integrated )

compound databases
provided by synthesis

Virtual Screening

Multiple structure/ligand
based Al methods for

Multi-target
selectivity prediction
based on Al (DTI rank)

g N
ADME/Tox safety and

efficacy evaluation

g N\
Automated docking with
Al rescoring

to rank compounds with

based on multitasking

vendors activity prediction deep learning approach the highest activity
Enamine Real Space - combme;:i lnttc; consensus

31B compounds > fecaon N\ t )

- - DTI - "
WuXi Galaxi - ) Pocket agnostic ‘ e
8B compounds drug-target interaction e

. Al models for ]
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. pocket selection ~-100K ~10K Scovery
-9.3K protein ___-’-——“"“
structures integrated T * 1000 in silico hit compounds

» -10% validated hits ready for lead
discovery
* Optimised target-specific Al model for VS

Integration of experimental feedback and Al models re-trainin
(Activity and/or affinity data)

¢ @




Al virtual screening

e Very fast (2-3 order of magnitude faster) initial filtration of the chemical
space

e Self-balancing: many known compounds —ligand-based approach; few
compounds —structure based approach.

e Separate models for protein tier lists (depending on the number of known
structures and ligands).

e 70+% accuracy on “favourable” targets.

e Early assessment of ADMET —fewer toxicity failures



ADMET prediction

MULTI-PARAMETRIC OPTIMISATION OF 80+ PK/ADME-TOX AND PHYSCHEM PROPERTIES

N

ADME (HUMAN)

Absorption:
* HIA
+ P-Glycoprotein Substrate-like Binding
* P-glycoprotein Inhibition
« P-glycoprotein Substrate-like Binding
Permeability
« Lipid bilayer permeability coefficient
(logPerm)
= Partitioning into the lipid bilayers
(LopK)
* CACO-2 cell permeability
+ PAMPA (Parallel Artificial Membrane
Permeability Assay)
Distribution:
« Plasma Protein Binding
« Blood-Brain Barrier
« Volume Distribution
Metabolism:
* Metabolic stability
+ CYPIA2 inhibition
* CYP3A4 inhibition
CYP2C19 inhibition
CYP2C9 inhibition
CYP2D6 inhibition
CYP1A2 Substrate-like binding
CYP2D6 Substrate-like binding
CYP3A4 Substrate-like binding
CYP2C19 Substrate-like binding
CYP2C9 Substrate-like binding
Excretion:
« Plasma clearance

+ Renal clearance

TOXICITY (HUMAN)

Specific toxicity:

Carcinogenecity (OSF)
Carcinogenecity (ISF)
Mutagenicity (AMES test)
Hepatotoxicity (DILD
Cardiotoxicity (hERG blocking)
Aromatase Inhibition
Androgen Receptor Binding

Androgen Receptor Antagonism

Androgen Receptor Agonism
Estrogen Receptor Binding
Estrogen Receptor Antagonism
Estrogen Receptor Agonism
Skin irritancy

Acute toxicity:

Acute oral toxicity prediction

Cytotoxicity:

HEK293 (Embryonic kidney
fibroblasts)

A549 (Lung carcinoma cells)
MCF7 (Breast carcinoma cells)

- 4

-

We possess proprietary datasets
allowing us to expand the set of
desirable ADME-Tox properties to
more than 60 endpoints based on

rat, mouse and dog models.

2]

v

~

PHYSCHEM AND DRUG LIKENESS

Drug-like Filters:

Lipinski Rule of 5
Ghose

Veber

REOS

Rule of 3

PhysChem Parameters:

Molecular Weight

Hydrogen Bond Donors
Hydrogen Bond Acceptors
Number of Rotatable Bonds
Number of Rings

Number of Aromatic Rings
Number of Atoms

Number of Heavy Atoms
Formal Charge

FCsp3

LogP

LogS

LogD

Stability in aqueous solution
Molar Refractivity
Topological Polar Surface Area
pKa

CNS MPO

CNS MPO v2
Synthesisability Score

Substructure Filters:

Glaxo
Dundee

BMS

PAINS
SureChEMBL
MLSMR
Inpharmatica
LINT

N




ADMET multi-task learning
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e  Multi-task ADMET model: trained on multiple endpoints with “cross-dissemination” between them.
e There are groups of tasks sharing the data to more or less extent




MultiTask model training

ADMET_param

2 AMES

3 Acute

4 Androgen_agon
5 Androgen_antag
6 Androgen_bind
7 BBB

8 Bioavailability

9  CYP.Inh_1A2

10 CYP_Inh_1A2

11 CYP_Inh_2C19
12 CYP_Inh_2C19
13 CYP_Inh_2C9
14 CYP_Inh_2C9

15 CYP_Inh_2D6

16 CYP Inh 2D6

Problem

binary
regression
binary
binary
binary
binary
binary
binary
regression
binary
regression
binary
regression
binary

reeression

Classical ML

0.859

0.515

0.941

0.908

0.906

0.9

0.773

0.851

0.559

0.828

0.443

0.808

0.477

0.836

0.53

Multi-Task

0.848

0.426

0.952

0.918

0.900

0.920

0.736

0.890

0.498

0.876

0.427

0.825

0.465

0.844

0.573

Multi-Task_all

0.835

0.394

0.939

0.913

0.899

0.896

0.715

0.843

0.396

0.797

0.298

0.820

0.357

0.816

0.474

Classical ML

0.844

0.531

0.93

0.894

0.892

0.894

0.69

0.84

0.584

0.808

0.39

0.82

0.495

0.843

0.567

Test

Multi-Task

0.838

0.409

0.953

0.893

0.890

0.915

0.659

0.831

0.495

0.842

0.461

0.800

0.335

0.830

0.507

Multi-Task_all
0.832
0.363
0.950
0.898
0.899
0.913
0.681
0.786
0416
0.779
0.269
0.765
0.200
0.806

0.427



Case study: membrane permeability

True-Predict Dependency (stage: cv)

e MolMeDb data for
o Membrane
permeability
o Membrane
partitioning
e Receptor.Al
MultiTask ADMET
NN architecture
e AutoML automatic
featurization

Task Samples MSE (cv) MSE (test) MAE (cv) MAE (test) R2 (cv) R2 (test)
T logK DOPC 434661 0.100 0.114 0.238 0.259 0.950 0.943
2 logK octanol 449128 0.044 0.057 0.155 0171 0.976 0.969
3 logP DOPC 434568 0.424 0.484 0.469 0.510 0.923 0.911

4 logP GENER 3717 2137 2.770 0.851 0.882 0.759 0.682



Case study: membrane permeability

True-Predict Dependency (stage: cv)

This is too good to be true...

Task Samples MSE (cv) MSE (test) MAE (cv) MAE (test) R2 (cv) R2 (test)
T logK DOPC 434661 0.100 0.114 0.238 0.259 0.950 0.943
2 logK octanol 449128 0.044 0.057 0.155 0171 0.976 0.969
3 logP DOPC 434568 0.424 0.484 0.469 0.510 0.923 0.911

4 logP GENER 3717 2137 2.770 0.851 0.882 0.759 0.682



FAIR data? Ha-ha! :

The LogK data collected in MolMeDb appeared to be not the raw data but
the predictions

o ALOGPS 2.1: an ancient (2002) Associative Neural Network (ASNN) approach.
The raw data were from PHYSPROP database;

o No longer publicly available from ~2020, all links are just broken.

o Claimed to be moved to EPI Suite software from US Environmental Protection Agency.

o  EPI Suite docs mention the same broken links.

o Binary .dbfiles in the installation are not readable (undocumented proprietary format).
Data archeology:

o A paper from 2017 (10.1021/acs.icim.6b00625) used PHYSPROP (still available back then) to
make a curated subset of data and to retrain the models —curated subset still public!

o Initial PHYSPROP had tons of issues (erroneous structures, inconsistencies among the
chemical names)

o In curated set: 81 invalid SMILES, 236 too small, 93 mixtures, 42 organometallic, 22 bad
valences, 1 duplicate.

o Remaining 13732 compounds.



https://doi.org/10.1021%2Facs.jcim.6b00625

FAIR data? Ha-ha! :

X Findable

X Accessible
X Interoperable
X Reusable

Nice job, US Environmental
Protection agency! &




Membrane permeability: corrected

True-Predict Dependency (stage: test)

e Model retrained
on curated raw
data

e Nowits
reasonable!

e Slightly better than
existing model

(~0.93)
Task Samples MSE (cv) MSE (tes MAE (cv) MAE (test) R2 (cv) R2 (test)
1 logK DOPC 434661 0.100 0.114 0.238 0.259 0.950 + 0.943
2 logK octanol 449128 0.044 0.057 0.155 0.177 0.942 0.945
3 logP DOPC 434568 0.424 0.484 0.469 0.510 0.923 0.911

4 logP GENER 3717 2137 2.770 0.851 0.882 0.759 0.682



TDC benchmarks: ADMET Al models open competition

Task
1 Caco-2
2 HIA
3 Pgp-sub

4 Bioavailability

5 BBB
6 PPB
7 VD

&  CYP2D6-inh

9 CYP3A4-inh

10 CYP2C9-inh

11 CYP2D6-sub

12 CYP3A4-sub

13 CYP2C9-sub

14 hERG

15 AMES

16 DILI

Metric
MAE
ROC-AUC
ROC-AUC
ROC-AUC
ROC-AUC
MAE
Spearman
PR-AUC
PR-AUC
PR-AUC
PR-AUC
ROC-AUC
PR-AUC
ROC-AUC
ROC-AUC

ROC-AUC

TDC Best RECEPTOR Best

0.988 + 0.033

0.935 + 0.002

0.748 + 0.006

0.930 + 0.004

7.811+0.163

0.627 £ 0.010

0.726 + 0.004

0.884 +0.001

0.800 + 0.001

0.736 + 0.024

0.662 + 0.031

0.441 £ 0.033

0.874 +£0.014

0.871 + 0.002

0.925 + 0.005

SAAS Data (Test)

0.293

0.944

0.897

0.811

0.979

9.714

0.750

0.880

0.869

0.874

0.835

0.920

0.678

0.922

0.930

0.815

TDC open
benchmarks set

https://tdcommons.ai
o 22 endpoints
o Public leaderboards
o Receptor.Al is not
officially on TDC yet

We are overall the
best on TDC metrics
Many endpoints are
the absolute best
Official participation
planned in spring
2024



https://tdcommons.ai

Al docking

e Al models trained on existing protein-ligand complexes.
o ~10-20k high quality complexes only
o Not physics-based, force field agnostic

e SMILE or 3D conformer + binding pocket as an input, binding pose as
an output.

o May produce distance matrix or point in dihedral space + post-processing to the
pose

e \Various representations of protein (AA, residue level, graph, distance
matrix, etc.)

e Flexible balance between speed and accuracy



The problem of data with protein-ligand complexes

e Thereis alimited number of //

experimentally determined 20000
protein-ligand complexes

1
— Ligand
—— Protein
—— Protein Family

//

P

1es

15000

-

o Number of all complexes (X-ray, Cryo-EM,
NMR): < 20k

10000 -

Number of entr;

o Hi-quality complexes with binding affinity

annotations: ~10k |
5000 1|/

e Only 1655 ligands present in >1
complexes

e ~1500 protein bind to 80% of all ligands 0 000 4000 6000 iqueiiggies 10000 12000
e ~100 protein families represent 60% of

all data
e \Verylimited and skewed dataset for ML!

Statistics of PDBbind database



Data augmentation technique

e Take the statistical distributions of interactions in real complexes.

e Generate artificial “binding pockets” around real ligands following these
distributions.

e Mix artificial pockets to real ones for model training at different
proportions.

e Assumed that all major non-bond interactions are present in
experimental data but their combinations are not adequately sampled.

e Augmented data teaches the model to recognize corner cases and
combinatorial variety of interactions that are absent in the
experimental training set.



Data augmentation: the details

#  Pocket feature Ligand feature Interaction type
1  Aromatic ring Aromatic ring Pi stacking
2 Amide group Aromatic ring Amide-pi
3 Aromatic ring Amide group Amide-pi
4 Aromatic ring Cationic atom Cation-pi
5  Hydrogen bond donor Hydrogen bond Hydrogen bond
acceptor
6  Hydrogen bond Hydrogen bond donor  Hydrogen bond
acceptor
7  Hydrogen bond Halogen atom Halogen bond
acceptor

8  Cationic atom Anionic atom Electrostatic
9  Anionic atom Cationic atom Electrostatic
10 Cationic atom Aromatic ring Cation-pi
11 Cor S atom F atom Hydrophobic
12 CorS atom Cl, Br or I atom Hydrophobic
13 CorSatom C or S atom Hydrophobic

hydrophobe (C/S-C/S) 255262 (74.3%)

hydrogen bond 52603 (15.3%)
hydrophobe (C/S-Cl/Br/l) 9423(2.7%).
cation-anion 8031 (2.3%)
pi stacking 6143 (1.8%)
amide-pi 5862 (1.7%)
hydrophobe (C/S-F) 065 (0.9%)
cation-pi 2623 (0.8%)
halogen bond 748 (0.2%)
10° 10* 10°

>

Probability Density

Probability Density

(9]

Probability Density

0.035]
0.030]
0.025]
0.020

0.015]

0.08]
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0.04
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0.02
0.01
0.00]

Hydrophobic

hydrophobic (C,5)-(C,S)

— Experimental
= Artificial

32 34 36 38 40 42 44
Distance (A)

hydrophobic (C,S)-(Cl,Br,1)

32 34 36 38 40 42 44
Distance (A)

hydrophobic (C,S)-(F)

30 32 34 36 38
Distance (A)

Probability Distribution

Probability Distribution

Probability Distribution

hydrophobic (C,S)-(C,S)

= Experimental
= Artificial

0.20]

hydrophobic (C,S)-(Cl,Br,1)

0.15)

0.10]

0.05
PEISFEEZRASEIARRIOORQ
IoIERAEZR323852853

Residue
hydrophobic (C,S)-(F)
0.15)
0.10!

0.05]

Probability Density

Probability Density

H-bonds

ligand acceptor - pocket donor
— Experimental
— Arificial

ligand acceptor - pocket donor ligand acceptor - pocket donor

= Experimental
= Artificial

Probability Density
Probability Distribution

" Experimental (DAY

24 26 28 30 32 34 36 38

Distance (&) D-HAAY Angles () Residue
pocket acceptor - ligand donor g POcKketacceptor - ligand donor pocket acceptor - ligand danor
005,
007,
004 2 006 2
003, & 00 5
2 004 z
0.0 3 o003 3
£ o £
001
001
0.00] 0.00,
24 26 28 30 32 34 36 38 105 120 135 150 165

Distance (A) D-HAH-AY Angles ()

e Reasonable correspondence of
distributions

e  Potential of improvement at the
cost of model training time

e Potential to add explicit ions and
cofactors

10.1039/D3RA08147H



https://doi.org/10.1039/D3RA08147H

ArtiDock: next gen ligand binding pose prediction

e Small model based on proprietary lightweight GNN architecture
o Fast training and inference.

e Includes only the binding pocket
o Less structural noise.
o Much smaller model.

e Augmenting limited data on protein-ligand complexes with artificial

pockets
o Algorithmic technique for generating “fake” pockets around diverse real ligands.
o Mimics statistical distributions of various non-bond interactions from experimental
pockets.
o Provides much more combinations of interactions than available in experimental pockets.
e Ability to integrate the protein dynamics

o Incorporation of processed MD trajectories



ArtiDock performance: Astex dataset

-

Percentage of predictions

Comparative performance of the docking methods
Astex Diverse set

87% RMSD < 24
RMSD < 2A & PoseBusters-Valid

64% -
NSNS \
56% 45% \
47% *\\\ \ S
\ \ \
‘\\\ \\ N 7%
12% SN 1% SO
(D) < > O C — O m
s s |32 x = 3§ g 2
o o o ) e = o =
o o o o) W) —
: 2 ¢ 3 g 3z
a2
Classical Deep Learning-based

Astex is a standard
dataset for docking
benchmarks

An older set created
before the Al hype
Considered not
particularly
challenging for Al
methods




ArtiDock performance: PoseBusters dataset

Docking techniques performance Docking techniques performance

PoseBuster v1 PoseBuster v3
= RMSD < 2A “ RMSD < 2A
0, i &
80% 74% " RMSD < 2A & PoseBusters-Valid 80% " RMSD < 2A & PoseBusters-Valid
5606 59% 60% . B R

60%| 5296 529 B

40% 40%

Percentage of predictions
Percentage of predictions

20% 20%
T 0%
& 3 218 8 3 § 3 § & £ ®© 5 2|/ 2 s § § &g £&
@ ® w|g ¥ ¥ =z ¥ B @ o & ®» §|g © z © 8 = §
T 8 8 ) 8 o 2 5 8 ] o 8 o) £ 2
o = = = = ] 3 23 23 = 2 S =] =]
= I f (@) O [oX Q s Y o o o Q.
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2 o o 27 o o 2
a 3 8
Classical DL-based Classical DL-based
PoseBusters dataset PoseBusters versions
° DOI: 10.1039/D3SC04185A ° V1 was made pUb”C in 2023 in the preprint
e Includes multiple structure quality metrics beyond RMSD e V3 published and peer reviewed .
_ ' V3 is adjusted in favor of conventional docking and
e Designed to ashame Al docking against Al even more (artificial bias)
e Ashamed by the next-gen Al docking @ e Al method still pass it @


https://doi.org/10.1039/D3SC04185A

e N
Percentage of predictions passing quality check from the PoseBusters

ArtiDock performance
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Detailed comparison with Glide and UniMol

RMSD Thesholds, PoseBusters v3
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PB-Valid scores
dependence on RMSD
cutoff
o ArtiDock and Glide:
increase
o Uni-Mol: constant
Absolute PB-Valid scores:
o ArtiDock and Glide:
comparable
o Uni-Mol: low
Scores: ArtiDock ~ Glide
Speed: ArtiDock >> Glide
Uni-Mol prioritizes RMSD
but fails miserably on
PB-Valid




Conclusions

e Al drug discovery techniques are here
to stay

e Pharma companies adoption
increases

e Data mining and analysis seems to be
dominated by LLMs

e Progressive substitution of the
“physics-based techniques” by “data
driven” ones (will docking finally die
for good?)

e Datais anew oil (but nobody wants
to collect and curate it)
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