

Quantum Mechanics in Drug Discovery

Book © 2020

EUR 213.99

7ADD, Olomouc, Jan 2024

Martin Lepšík

LEPSIK@UOCHB.CAS.CZ

My Scientific Interests I

1) Protein-ligand binding at atomistic details

Fanfrlik, J. et al. In: Boron-Based Compounds: Potential and Emerging Applications in Medicine, Wiley, 2018.

Chem Soc Rev

Dostal et al., Acta Cryst D, 2015, 71, 2494

My Scientific Interests II

3) Semiempirical Quantum Mechanical (SQM) Scoring

Reviews:

Lepšík et al.; *ChemPlusChem* **2013**, 78, 921 Pecina et al.; *ChemPlusChem* **2020**, 85, 2362

4) Electronic Continuum Correction in Classical Molecular Dynamics

Lepšík et al.; *Eur J Med Chem* **2019**, *177*, 212.

Porkolab, Lepšík et al.; ACS Cent Sci 2023, 9, 4, 709.

My Scientific Interests III

5) Insulin analogue/Insulin receptor binding

[L-HisB24]-insulin analogue sequence

C_{B-chain} N_{B-chain} C_{A-chain}

Posters

Yevgen Yurenko et al Quantification of Non-covalent Interactions at Protein-Protein Interface

Jiri Zak and Martin Lepsik Molecular Dynamics of Insulin analogue/Insulin receptor Complexes

Outline

- 1. Use of QM in Drug Design
- 2. Advantages and Limitations of QM
- 3. SQM method development
- 4. SQM-based Scoring Function

Where in Drug Design can QM help?

Structure-based DD

- X-ray crystallographic refinement
- Hit Identification (Virtual Screening, Docking, Scoring)
- Hit-to-Lead
- Docking
- Scoring

Ligand-based DD

- Partial charges
- Bioactive conformations
- pKa predictions

Structure-based Affinity Prediction

Standard Scoring Functions (SFs)

- ultrafast (seconds per compound)
- lack both accuracy and reliability

Machine-Learning (M-L)

- ultrafast (seconds per compound)
- -? training data/accuracy
- -? applicability domain

Free Energy Methods (FEP)

- variable accuracy, force-field dependent
- relative vs. absolute; slow on GPU (days)

Quantum Mechanics (DFT)

- accurate but slow on 10s CPU (days)
- not applicable to large biomolecules (proteins)

Why Quantum Mechanics?

- quantitative: all types of non-covalent interactions
- dispersion, H-bonding, halogen bonding, etc.
- quantitative description
- metal interactions
- polarization, charge transfer
- covalent binding
- no parametrization of ligands

J. Phys. Chem. B, 2010, 114, 12666

J. Phys. Chem. B 2013,117, 14973 J. Chem. Inf. Model. 2017, 57, 127 ACS Chem. Biol. 2013, 8, 2484

Which QM method?

- Fast
- linear-scaling with system size
- general (periodic table)

QM Methods for Non-covalent Interactions

- Small models, accurate calculations (CCSD(T)/CBS) in vacuum
- S66 benchmark dataset: H-bonding, dispersion
- <u>www.nciatlas.org</u> (~ 20,000 data points)
- hydrogen bonding, dispersion, sigma-hole interactions, repulsion

Coverage of the periodic table:

1.016

methanol --- acetamide

-7.99 kcal/mo

0H-0

- Development of semiempirical QM methods corrections for non-covalent interactions
- chemical accuracy (1 kcal/mol) in small dimers

Řezáč, J., Hobza P. Chem. Rev. 2016, 116, 9, 5038

Corrected Semiempirical QM

- Fast calculation
- Easy preparation (no system-specific parameters)
- Accuracy?

[1] Řezáč et al.; J. Chem. Theory Comput. 2009, 5, 1749
[2] Řezáč and Hobza.; J. Chem. Theory Comput. 2012, 8,141
[3] Řezáč; J. Chem. Theory Comput. 2017, 13, 4804

COSMO2 Implicit Solvation Model

- reparametrisation of COSMO
- adding non-polar solvation term

Kříž, K. & Řezáč, J. J. Chem. Inf. Model. 2019, 59, 229

SQM2.20 Scoring Function

Modular physics-based approach:

- MM/GBSA-like
- components can be replaced if better alternatives exist

Fanfrlík et al.; J. Phys. Chem. B 2010, 114, 12666

QM/MM Setup

- Internal moving QM part
- Intermediate QM static part
- Outside fixed

Quest for Universal Reliable

Scoring Function

Quantum Mechanical Scoring in Structure-based Drug Design

<u>M. Lepšík</u>, J. Fanfrlík, A. Pecina, J. Řezáč

ÚOCHB 🕅 IOCB PRAGUE

P. Hobza and past members

Is the Scoring Function Universal and Reliable?

Comparison to the "experimental "truth" in multiple diverse data sets

- Input: Experimental structures or a high-quality model
- Comparison with **RELIABLE** experimental affinities
- Reproducibility from multiple independent measurements: R² = 0.8)

Kramer et al. J. Med. Chem. 2012, 55, 5165–5173.

PL-REX dataset

Protein-**L**igand / **R**eliable **Ex**periment data set, understanding of the system and meticulous preparation

- reliable structures, preferably crystal
- measurements from one lab (K_i, IC₅₀)
- careful preparation of each protein

Target	Ligands	Crystals	Similarity	Experiment	pKi range
Carbonic anhydrase	10	10	0.32	Ki	2.2
HIV Protease	22	12	0.51	Ki	5.1
Casein kinase 2	16	16	0.35	Ki	1.9
Aldose reductase	14	14	0.47	Ki	2.8
Cathepsin D	10	3	0.71	IC50	3.5
Beta-secretase 1	16	16	0.48	IC50	3.6
Janus kinase 1	12	12	0.55	Ki	3.4
Trypsin	15	15	0.46	Ki	4.4
CDK2	31	31	0.69	IC50	3.6
Matrix metallopeptidase 12	18	18	0.47	Ki	3.9

Dataset available:https://github.com/Honza-R/PL-REXPreprint:https://dx.doi.org/10.26434/chemrxiv-2023-zh03k

Systems Rejected from PL-REX

	Source	Ligands	Crystals	Resolution	pKi span	Notes
Cathepsin S	D3R challenge	19	24	1.7 - 3.0	1.3	Wrong ligand conformations and maps in X-rays
Beta-Secretase 1 BACE-1	D3R challenge	13	13	1.7 - 2.3	0.8	
Bromodomain of BRD4	10.1021/acs.jcim.1c01229	14	1	1.6	3.6	single X-ray, docked ligands (worked for FEP)
M. tuberculosis Malate synthase	10.1021/acs.jcim.8b00417	20	20	1.4 - 2.6	3.4	Ligands replace some waters
Receptor tyrosine kinase EPHA2	10.1002/cmdc.201700217	14	18	1.2 - 1.9	3.7	Ligand modifications are in solvent area

- Best SFs in the CASF2016 set^[1]
- Few more used previously in the group
- Structure-based machine learning

Timing:

- Empirical SFs <= seconds
- SQM-score ~ 20 minutes

Su, M. et al., J. Chem. Inf. Model., 2019, 59, 895.

Correlation with experiment, averaged over 10 targets

Correlation with experiment, averaged over 10 targets

 \mathbb{H}_2

Correlation with experiment, averaged over 10 targets

Correlation with experiment, averaged over 10 targets

P-L complex geometry

- determines the quality of scoring
- The same SQM score computed on increasingly more refined geometries

Comparison with MM and DFT

	Default Model (~2,000 atoms)				Trimmed Model (~1,000 atoms)	
Dataset	SQM2.20	SQM2.20 //AMBER	AMBER		SQM2.20	DFT score
01-CA2	0.67	0.36	0.28		0.63	0.85
02-HIV-PR	0.75	0.70	0.33		0.71	0.61
03-CK2	0.81	0.70	0.40		0.79	0.53
04-AR	0.70	0.56	0.01		0.60	N.D.
05-Cath-D	0.66	0.22	0.23		0.70	0.66
06-BACE1	0.63	0.57	0.37		0.37	0.25
07-JAK1	0.56	0.57	0.03		0.59	0.49
08-Trypsin	0.75	0.73	0.54		0.61	0.79
09-CDK2	0.61	0.20	0.07		0.56	0.50
10-MMP12	0.74	0.62	0.03		0.81	0.69
Average	0.69 0.52 0.23			0.62 (0.67*)	0.64*	

- SQM: universal performance across targets
- AMBER geometries deteriorate SQM2.20 scoring in some targets
- AMBER scoring: low performance
- SQM2.20 comparable to DFT (ΔE_{int} replaced by $\omega B97X$ -D3BJ/DZVP) BUT
- SQM2.20 is fast (20 min/system on 1CPU) vs. DFT with ~10³ CPU-hours / system)
- DFT brings no statistically significant improvement
- SQM with corrections very good
- Gas-phase DFT susceptible to errors

Preprint:

https://dx.doi.org/10.26434/chemrxiv-2023-zh03k

Affinity Prediction: Timing

End-point Methods

- scoring (seconds, 1CPU)
- SQM2.20 (minutes, 1CPU)
- DFT (hours/days, multi CPU/GPU)

Ensemble Methods

• FEP (hours/days, multi CPU/GPU)

Schrodinger FEP+ Dataset

Schrodinger FEP+

- 8 targets, 10-40 ligands each, similar
- Automatic preparation
- **Free-Energy Perturbation**
- **OPLS 2.1** force field
- **REST** enhanced sampling
- GPU

Wang L et al., J. Am. Chem. Soc. 2015, 137, 2695–2703

Comparison with FEP+ on PL-REX

Target	num. of ligands	avg. Tanimoto	charge	SQM2.20	FEP+
01-CA2	10	0.32	-1	0.67	0.55
02-HIV-PR	22	0.51	0, 1	0.75	0.04
03-CK2	16	0.35	-1	0.81	0.54
04-AR	14	0.47	-1	0.70	0.00
05-Cath-D	10	0.71	0	0.66	0.75
06-BACE1	16	0.48	0, 1	0.63	N.D.
07-JAK1	12	0.55	0, 1	0.56	0.34
08-Trypsin	15	0.46	0, 1, 2	0.75	0.46
09-CDK2	31	0.69	-1	0.61	0.56
10-MMP12	18	0.47	0	0.74	0.42
AVERAGE	17	0.52		0.69	0.40

- PL-REX challenging for FEP+
- different ligand charges
- dissimilar ligands

Comparison with FEP+ on Schrodinger Dataset

Comj on S	parison chrodi	with Fl	EP+ taset			Work in progr
Target	num. of ligands	avg. Tanimoto	FEP+	SQM2.20	SQM2.20/fixed	- 6
BACE	36	0.71	0.61	0.00	0.23	
CDK2	16	0.84	0.23	0.29	0.56	
JNK1	21	0.85	0.72	0.16	0.19	
MCL1	42	0.67	0.59	0.58	0.58	
p38	34	0.77	0.42	0.25	0.36	
PTP1B	23	0.79	0.64	0.55	0.55	
thrombin	11	0.84	0.50	0.63	0.66	
Tyk2	16	0.84	0.79	0.58	0.62	
AVERAGE	25	0.79	0.56	0.38	0.47	

- SQM2.20 limited by lack of reliable initial structures (severe clashes from docking/modeling)
- simple fixes improve correlations
- further improvements expected after complex refinement of structures

J. Am. Chem. Soc. 2015, 137, 7, 2695; J. Chem. Inf. Model. 2023, 63, 8, 2438

Integrating SQM2.20 with Docking

solution for complexes with unknown structures?

- selecting native-like poses from docking
- previous SQM versions identified the native pose reliably^{1,2}

Work in progress

Native Pose Identification

- diverse set of 17 protein-ligand systems
- compared to 8 standard scoring functions
- false positive = a pose with better score than crystal (ideal: zero false positives)
- SQM has 4-12-times less FPs than the standard SFs

Pecina et al.; *Chem. Commun.* **2016**, 52, 3312; Pecina et al.; *J. Chem. Inf. Model.* **2017**, 57, 127; Ajani et al.; *ACS Omega* **2017**, 2, 4022

Towards Virtual Screening

- Heat shock protein (HSP90); cancer and immunity
- 72 biologically active compounds + 4469 structurally similar compounds (DUD-E decoys)
- Enrichment factor (EF1) and ROC curves (AUC%), where random is (1, 50%) and ideal (63, 100%)

Eyrilmez et al.; ChemPhysChem 2019, 20, 2759

SQM2.20: Universal Physics-based Quantum Mechanical Scoring

- **Reliable affinity predictions** ("DFT accuracy")
- **Reasonable computational cost** (20min/1CPU/compound)
- Insightful details of P-L binding (SQM geometries + energetics)
- Tested on diverse set of curated data
- publicly available **PL-REX**: 10 proteins, >150 ligands, structures, affinities
- Superior to quick approaches to ranking (MM, standard SFs and M-L)
- Comparable to FEP+ (preliminary results)

SQM 2.20 preprint

Open to collaborations

- Interested in datasets where conventional methods fail
- Comparison to other methods
- Extending data set coverage / application domain
- Trial license for the software

Contact: Lepsik@uochb.cas.cz LinkedIn: Martin Lepsik Twitter/X: @Lepsik_science

Thank you for your attention