7th Advanced in silico Drug Design workshop/challenge 2024

Molecular Docking Tutorial

The X-ray structure of COXs complexed with Arachidonic Acid (AA) confirms a L-shaped binding conformation, with the carboxylate moiety of AA binding to **Arg120** and **Tyr355**, while the omega-end positioned in a region termed the top channel in close contact with **Ser530** and **Tyr385**

Tyr355

Arg120

Reversible competitive inhibitors (Ibuprofen and Flurbiprofen) act by interfering with hydrophilic interactions (hydrogen-bonds or salt-bridge) with **Arg120** and **Tyr355** at the entrance of the cyclooxygenase channel.

Arg120

Tyr355

TASK:

Perform Molecular Docking calculations of Celecoxib against both the COX1 and COX2 isoforms, in order to understand the molecular basis of its COX2 selectivity

Celecoxib (COX2 selective inhibitor)

- 1. MGLTools (GUI of AutoDock Tools)
- 2. AutoDock4 and AutoDock Vina docking engines
- 3. PyMOL (visualization results)

Ligand preparation (GUI of AutoDock Tools)

1. Import the Celecoxib (CEL.pdb) Ligand>Input>Open>*.pdb>CEL.pdb *ligand will be prepared for docking. After clicking the "OK" button, you will see that all the hydrogens atoms are merged to carbon atoms.*

2. Check for aromatic carbons Ligand>Aromatic carbons>Set Names Aromatic atoms are shown in green

3. Check rotatable torsions

Ligand>Torsion Tree>Choose Torsion Rotatable bonds are shown in green, unrotatable in red. Celecoxib has 5 rotatable bonds

4. Save pdbqt file Ligand>Output>Save as> *.pdbqt>CEL.pdbqt

Let's have a look on the CEL.pdbqt file

REMARK	5 ac	tive	torsi	ons:											
REMARK	stat	us:	('A' f	or A	ctive;	'I' f	or In	acti	ive)	(Inform	ation abou	ıt		
REMARK	1	А	betw	een	atoms:	S1_1	and	C15	5_2		ligand	active (A)			
REMARK	2	А	betw	een	atoms:	S1_1	and	N3_	24		torsion	s			
REMARK	3	А	betw	een	atoms:	C12_5	and	Na	2_8	C					
REMARK	4	А	betw	een	atoms:	C3_9	and	C5_	_10						
REMARK	5	А	betw	een	atoms:	C1_18	and	C4	4_19)						
ROOT						Coor x	Coc	or y	Coo	or z	Occ.	B-factor	Charges	s Types	5
ATOM	1	S1	CEL A	682		25.931	-21.	467	-17.1	L55	1.00	43.78	0.256	S	
ATOM	2	02	CEL A	682		25.772	-20.	039	-17.2	291	1.00	45.34	-0.201	OA	Atom description
ATOM	3	01	CEL A	682		25.436	-22.	106	-15.9	949	1.00	45.63	-0.201	OA	
ENDROOT															
BRANCH	1	4	Forsion	defi	nitions										
ATOM	4	C15	CEL A	682		27.679	-21.	706	-17.1	L31	1.00	41.41	0.079	А	
ATOM	5	C14	CEL A	682		28.218	-22.	829	-16.5	556	1.00	39.70	0.027	А	
ATOM	6	C13	CEL A	682		29.584	-22.	964	-16.5	543	1.00	39.68	0.033	Α	
ATOM	7	C12	CEL A	682		30.341	-21.	967	-17.1	L09	1.00	39.92	0.059	Α	
ATOM	8	C17	CEL A	682		29.796	-20.	853	-17.6	597	1.00	40.26	0.033	А	
ATOM	9	C16	CEL A	682		28.434	-20.	714	-17.7	707	1.00	40.98	0.027	А	
BRANCH	7	10													
ATOM	10	N2	CEL A	682		31.724	-22.	006	-17.1	L32	1.00	40.07	-0.233	Ν	
ATOM	11	C3	CEL A	682		32.622	-22.	574	-16.2	260	1.00	40.53	0.071	А	
ATOM	12	C2	CEL A	682		33.843	-22.	337	-16.8	337	1.00	41.52	0.070	А	
TORSDOF	5	Nu	mber o	f acti	ve torsi	ion									

Receptor preparation (GUI of AutoDock Tools)

1. Select protein (only ChainA)

Grid>Macromolecule>Open>cox2.pdb protein will be prepared for docking (nonpolar hydrogens merged with carbons, charges assigned)

2. Set the Celecoxib Map Types Grid>Set Map Types>Directly (A C F NA OA N S HD)

COX2 preparation (GUI of AutoDock Tools)

File

- 3. Locate the Grid Box on the ciclooxigenase site Grid>Grid Box
- A cube with a default size of 40x40x40 will appear.
- Adjust the box coordinates so it will cover active site (at the center of CEL), but not much more. For a good centering of the grid box we suggest to manually modify to
- *x center: 29.588*,
- *y center: -22.083*,
- z center: -17.418

4. Save the Grid Box Parameter

From the Grid Options window: File> Close saving current

COX2 preparation (GUI of AutoDock Tools)

5. Manually edit protein PDBQT to charge iron (+2)

HETATM 4482 FE HEM A 500 5.890 24.568 -1.058 1.00 18.80 2

6. Save the Grid Parameter File (GPF) Grid>Output>Save GPF>cox-2.gpf

Alternatively you can run the following command prepare_gpf4.py -l CEL.pdbqt -r cox2.pdbqt -o cox-2.gpf

7. Run AutoGrid

autogrid4 -p cox-2.gpf -l cox2.glg

UP Olomouc 29.01. -02.02.2024

Repeat the same procedure for COX1...

Molecular Docking Tutorial

Preparing the Docking Parameter File (DPF)

- 1. From the ADT GUI import receptor (PDBQT) Docking>Macromolecule>Set Rigid Filename>cox2.pdbqt
- 2. From the ADT GUI import ligand (PDBQT) Docking>Ligand>Open>CEL.pdbqt

- 3. Save the Docking Parameter File (DPF) Docking>Output>Lamarchian GA>docking-cox2.dpf
- Alternatively you can run the following command prepare_dpf4.py -l CEL.pdbqt -r cox-2.pdbqt -o docking-cox2.dpf

Lamarckian GA(4.2).

Genetic Algorithm(4.2)... Simulated Annealing(4.2) Local Search(4.2)...

Evaluate Energy(EPDB). Vina Config(config.txt)...

Search Parameters Docking Parameters Other Options... Output Edit DPF...

Molecular Docking Tutorial

RUN AutoDock4

CEL vs COX2

Autodock4 -p docking-cox2.dpf -l docking-cox2.dlg

CEL vs COX1

Autodock4 -p docking-cox1.dpf -l docking-cox1.dlg

Molecular Docking Tutorial

Docking analysis (poses/scores)

1. Open the .dlg file Analyze>Dockings>Open>file.dlg

2. Open the receptor (PDBQT) Analyze>Macromolecule>Open>receptor.pdbqt

3. Visualize docking conformations Analyze>Conformations>Play Ranked by Energy

4. Write all the conformations in pdbqt file Click on the indicated icon>Write all Docking conformations will be write ranked by energy. «Conf0.pdbqt» has the best energy value

Docking analysis with PyMOL

All the poses converge to one unique binding mode with a binding affinity score of -10.41 kcal/mol. The sulfonamide group directly interact with hydrogen-bonds with **Arg106**

Of the 10 poses, 7 are oriented with the sulfonamide moiety toward **Arg120** and **Tyr355**, while 3 poses are in opposite orientation. Nonetheless, the presence of **Ile523** hampers Celecoxib to directly interact with **Arg120** and **Tyr355**. The binding affinity is also less stable (-7.62 Kcal/mol)

UP Olomouc 29.01. -02.02.2024

	Docking parameter file	e (config.	.txt)			
	Protein Ligand	receptor = cox2.pdbqt ligand = CEL.pdbqt				
	Output file name	out log	= vina_results.pdbqt = vina_results.log			
Remember: AutoDock Vina internally precalculates the grid maps. You don't have to	Box center	<pre>center_x center_y center_z</pre>	<pre>= 29.588 = -22.083 For an optimal = -17.418 comparison we will </pre>			
run AutoGrid4.	Box size	size_x size_y size_z	 = 40 = 40 = 40 = 40 			
	Search exhaustiveness	exhaustiveness = 8				
	Number of docking poses	num_modes = 10				

RUN AutoDock Vina

CEL vs COX2

vina --config config.txt

CEL vs COX1

vina --config config.txt

Docking analysis with PyMOL

CEL vs COX2

- 1. Open the vina_results_cox2.pdbqt file and split Action>State>Split
- 2. Open the cox2.pdbqt file

CEL vs COX1

- 1. Open the vina_results_cox1.pdbqt file Action>State>Split
- 2. Open the cox1.pdbqt file

