7th Advanced In silico Drug Design workshop/challenge

 29 January - 2 February 2024

 Olomouc, Czech Republic

Virtual screening in drug discovery

Pavel Polishchuk

Institute of Molecular and Translational Medicine Palacky University

pavlo.polishchuk@upol.cz

Drug development workflow

Vistoli G., et al., Drug Discovery Today, 2008, 13, 285-294

up to 1 B commercially available compounds

virtually enumerated dataset

GDB-17 166 B compounds = 1.66x10¹¹

ZINC

3

Hoffmann, T.; Gastreich, M., The next level in chemical space navigation: going far beyond enumerable compound libraries. *Drug Discovery Today* **2019**, 24, 1148-1156

Screening

High-throughput screening (HTS)

up to 10⁶ of compounds can be tested

- expensive
- not all targets are suitable for HTS

DNA-encoded libraries (DEL)

up to 10⁹ of compounds can be tested

- moderately expensive
- not all reactions can be adopted to DEL conditions

Virtual screening

up to 10¹² of compounds can be tested

- cheap
- fast
- not very accurate

Molecule ID

CHEMBL1367590 CHEMBL2403348

CHEMBL4209434 CHEMBL204341

CHEMBL494704

CHEMBL1581690 CHEMBL4869612

CHEMBL447111

CHEMBL152972

CHEMBL494705

CHEMBL398456

CHEMBL4760508

CHEMBL196509

CHEMBL522471

CHEMBL3657154

CHEMBL361258

CHEMBL296411

CHEMBL511492

CHEMBL4850019

CHEMBL441537

CHEMBL399142

CHEMBL235386 CHEMBL1342736

CHEMBL106773

CHEMBL3427390

CHEMBL3827784

CHEMBL4243739

CHEMBL1347829

CHEMBL1676

CHEMBL192325 CHEMBL1301796

CHEMBL1370

CHEMBL4851230

Score

0.715

0.599

0.554

0.686

0.660

0.108

0.438

0.118

0.347

0.828

0.471

0.538

0.465

0.122

0.189 0.143

0.171

0.591 0.661

0.639

0.030

0.965

0.776

0.206

0.162

0.755

0.027

Virtual screening concept Molecule ID Score CHEMBL106773 0.965

inforceute ib		
CHEMBL106773	0.965	
CHEMBL4760508	0.828	
CHEMBL3427390	0.776	
CHEMBL4243739	0.755	
CHEMBL2403348	0.715	
CHEMBL4869612	0.686	
CHEMBL399142	0.661	
CHEMBL447111	0.660	
CHEMBL235386	0.639	
CHEMBL204341	0.599	
CHEMBL441537	0.591	
CHEMBL4209434	0.585	
CHEMBL1581690	0.554	
CHEMBL3657154	0.538	
CHEMBL192325	0.486	_
CHEMBL522471	0.471	
CHEMBL361258	0.465	
CHEMBL4851230	0.438	
CHEMBL398456	0.347	
CHEMBL196509	0.214	
CHEMBL3827784	0.206	
CHEMBL296411	0.189	
CHEMBL4850019	0.171	
CHEMBL1301796	0.162	
CHEMBL511492	0.143	
CHEMBL1367590	0.127	
CHEMBL1370	0.122	
CHEMBL494705	0.118	
CHEMBL152972	0.108	
CHEMBL494704	0.072	
CHEMBL1342736	0.030	
CHEMBL1676	0.027	
CHEMBL1347829	0.004	

Number of Compounds

ΗŃ

Similarity principle

Similar compounds have similar properties

Ranking of compounds: example

Structure representation

- structural keys
- fingerprints
- molecular shape

Similarity measure

- Tanimoto
- Dice
- Euclidian

•

OH

Dice					
Atom pairs	ECFP4	FCFP4			
0.327 (3)	0.219 (2)	0.233 (1)			
0.364 (1)	0.185 (3)	0.170 (2)			
0.333 (2)	0.291 (1)	0.125 (3)			

*binary fingerprints calculated with RDKit

Similarity search output depends on descriptors and similarity measure selected

What is similarity between random compounds

Thresholds for "random" in fingerprints the RDKit supports

FINGERPRINTS SIMILARITY REFERENCE

When is it just noise?

PUBLISHED

May 18, 2021

Fingerprint	Metric	70% level	80% level	90% level	95% level	99% level
MACCS	Tanimoto	0.431	0.471	0.528	0.575	0.655
Morgan0 (counts)	Tanimoto	0.429	0.471	0.525	0.568	0.651
Morgan1 (counts)	Tanimoto	0.265	0.293	0.333	0.364	0.429
Morgan2 (counts)	Tanimoto	0.181	0.201	0.229	0.252	0.305
Morgan3 (counts)	Tanimoto	0.141	0.156	0.178	0.196	0.238
Morgan0 (bits)	Tanimoto	0.435	0.475	0.529	0.571	0.656
Morgan1 (bits)	Tanimoto	0.273	0.301	0.341	0.371	0.434
Morgan2 (bits)	Tanimoto	0.197	0.217	0.246	0.269	0.322
Morgan3 (bits)	Tanimoto	0.165	0.181	0.203	0.222	0.264

https://greglandrum.github.io/rdkit-blog/posts/2021-05-18-fingerprint-thresholds1.html

Similarity search: chemfp project

Dalke J Cheminform (2019) 11:76 https://doi.org/10.1186/s13321-019-0398-8 Journal of Cheminformatics

METHODOLOGY

Open Access

The chemfp project

Andrew Dalke^{*}

Fingerprints supported:

- RDKit
- CDK
- OpenEye
- OpenBabel
- PubChem
- ChemFP

Similarity search: example

Kellenberger, E., et al., Identification of nonpeptide CCR5 receptor agonists by structure-based virtual ₁₃ screening. *Journal of Medicinal Chemistry* **2007**, 50, 1294–1303.

Similarity search: conclusions

- + Little information is required to start searching
- + Different chemotypes can be retrieved
- + Ultra fast screening
- Hits may share common substructures with reference structures that may reduce their patentability
- Results depend on chosen descriptors and similarity measure
- Structural similarity is not always followed by biological one

Early pharmacophore hypothesis

Atom- and pharmacophore-based alignment

ΙΜΤΜ

Hydrogen bonding patterns

Atom-based alignment

17

A **pharmacophore** is the ensemble of steric and electronic features that is necessary to ensure the optimal supramolecular interaction with a specific biological target structure and to trigger (or block) its biological response.

Annu. Rep. Med. Chem. 1998, 33, 385–395

Feature-based pharmacophore models

Features: Electrostatic interactions, H-bonding, aromatic interactions, hydrophobic regions, coordination to metal ions ...

Ligand-based pharmacophores

Shared model on 83 antagonists of fibrinogen receptor

Pharmacophore models obtained for clusters of compounds

Polishchuk, P. G. et al., Journal of Medicinal Chemistry 2015, 58, 7681-7694.

MD pharmacophores

Polishchuk, P. et al. Virtual Screening Using Pharmacophore Models Retrieved from Molecular Dynamic Simulations. *International Journal of Molecular Sciences* **2019**, 20, (23), 5834.

- + Universal representation of binding pattern
- + Qualitative output
- + Very fast screening
- + Scaffold hopping
- Structure-based models can be very specific
- Ligand-based models depend on conformational sampling

Modeling of compound properties

Activity = F(structure)

Х	۲ ₁	X ₂	X ₃	X ₄	X ₅	X ₆	 X _N
-	1	0	9	0	11	1	 1
4	1	0	1	0	0	0	 1
()	0	0	0	0	4	 6
()	2	3	6	0	0	 3
2	1	0	0	0	1	2	 1

Activity = M(E(structure))

M – mapping function E – encoding function

QSAR modeling workflow

Encoding (represent structure with numerical features) Mapping (machine learning)

Input data

Overall QSAR workflow

Bioassays Databases

Data normalization & curation Feature extraction

Feature selection Feature combination

Classification Regression Clustering

Cross-validation

Bootstrap

Applicability

Test set

Domain

Interpretation

OECD principles for the validation, for regulatory purposes, of (Q)SAR models

- a defined endpoint 1)
- 2) an unambiguous algorithm
- 3) a defined domain of applicability
- appropriate measures of goodness-of-fit, robustness and predictivity 4)
- a mechanistic interpretation, if possible 5)

Examples of QSAR models

Hansch equation

plant growth inhibition activity of phenoxyacetic acids

 $1/C = 4.08\pi - 2.14\pi^2 + 2.78\sigma + 3.38$

 $\pi = \log P_X - \log P_H$ σ - Hammet constant

Free-Wilson models

Inhibition activity of compounds against *Staphylococcus aureus*

R is H or CH_3 ; X is Br, Cl, NO_2 and Y is NO_2 , NH_2 , $NHC(=O)CH_3$

 $Act = 75R_{H} - 112R_{CH3} + 84X_{CI} - 16X_{Br} - 26X_{NO2} + 123Y_{NH2} + 18Y_{NHC(=O)CH3} - 218Y_{NO2}$

QSAR: example

Antimalarial activity

QSAR: conclusions

- + Qualitative and quantitative output
- + May work for compounds having different mechanisms of action
- + Fast screening
- Very demanding to the quality of input data
- Applicability limited by the training set structures
- Hard to encode stereochemistry

Molecular docking predictions

Pose – a possible relative orientation of a ligand and a receptor as well as conformation of a ligand and a receptor when they are form complex **Score** – the strength of binding of the ligand and the receptor.

Bioorganic & Medicinal Chemistry, 20 (12), 2012, 3756–3767.

Why docking is complex?

Complex 3D jigsaw puzzle

Conformational flexibility – many degrees of freedom

Mutual adaptation ("induced fit")

Solvation in aqueous media

Complexity of thermodynamic contribution

No easy route to evaluation of ΔG

Simplification and heuristic approaches are necessary

"At its simplest level, this is a problem of subtraction of large numbers, inaccurately calculated, to arrive at a small number."

(Leach A.R., Shoichet B.K., Peishoff C.E., J. Med. Chem. 2006, 49, 5851-5855)

Sampling and scoring

Protein-ligand docking software consists of two main components which work together:

- **1. Search algorithm (sampling)** generates a large number of poses of a molecule in the binding site.
- **2. Scoring function** calculates a score or binding affinity for a particular pose

Search algorithms (sampling)

Forcefield-based

Based on terms from molecular mechanics forcefields GoldScore, DOCK, AutoDock

Empirical

Parameterised against experimental binding affinities ChemScore, PLP, Glide SP/XP

Knowledge-based potentials

Based on statistical analysis of observed pairwise distributions PMF, DrugScore, ASP

Molecular docking: example

Lyu, J. et al Ultra-large library docking for discovering new chemotypes. *Nature* **2019**, 566, 224-229.

- + Relatively fast
- + Determine binding poses
- + Good in ranking ligands for virtual screening
- Low accuracy of binding energy estimation
- Require knowledge about binding site

Deep docking (surrogate modeling)

Gentile, F.; Agrawal, V.; Hsing, M.; Ton, A.-T.; Ban, F.; Norinder, U.; Gleave, M. E.; Cherkasov, A. Deep Docking: A Deep Learning Platform for Augmentation of Structure Based Drug Discovery. *ACS Cent. Sci.* **2020**, 6 (6), 939-949

Hoffmann, T.; Gastreich, M., The next level in chemical space navigation: going far beyond enumerable compound libraries. *Drug Discovery Today* **2019**, 24, 1148-1156