7th Advanced In silico Drug Design workshop/challenge

P

Univerzita Palackého v Olomouci

29 January - 2 February 2024 Olomouc, Czech Republic

De novo drug design

Pavel Polishchuk

Institute of Molecular and Translational Medicine Faculty of Medicine and Dentistry Palacky University

> pavlo.polishchuk@upol.cz qsar4u.com

Hoffmann, T.; Gastreich, M., The next level in chemical space navigation: going far beyond enumerable compound libraries. *Drug Discovery Today* **2019**, 24, 1148-1156.

Polishchuk, P. G.; Madzhidov, T. I.; Varnek, A., Estimation of the size of drug-like chemical space based on GDB-17 data. *Journal of Computer-Aided Molecular Design* **2013**, 27, 675-679.

Virtual screening vs. de novo design

Virtual screening

De novo design

~10³⁶ drug-like compounds

Model

10-100 compounds

- 1. Structure generation how to create/assembly new structures
- 2. Compound scoring how to estimate/predict a property of a compound
- 3. Search strategy how to find compounds with optimal properties

- atom-based uses simple rules like add/change/remove atom/bond to perturb structures
- fragment-based uses fragment library to create structures
- reaction-based uses a set of reaction rules and a library of reactants

Atom-based structure generation

Molpher

Hoksza, D.; Škoda, P.; Voršilák, M.; Svozil, D., Molpher: a software framework for systematic chemical space exploration. *Journal of Cheminformatics* **2014**, 6, 7, 10.1186/1758-2946-6-7

Atom-based structure generation

Hoksza, D.; Škoda, P.; Voršilák, M.; Svozil, D., Molpher: a software framework for systematic chemical space exploration. *Journal of Cheminformatics* **2014**, 6, 7, 10.1186/1758-2946-6-7

Atom-based structure generation

parameters	atom-based
exhaustiveness of chemical space search	++++ very small steps; more suitable for systematic exploration of local chemical space
structure novelty	+++*
structure diversity	+++*
chemically valid structures	-
synthetically feasible	
combinatorial explosion / time consuming	

atom-based ≈ *ab initio*

Hartenfeller, M.; Zettl, H.; Walter, M.; Rupp, M.; Reisen, F.; Proschak, E.; Weggen, S.; Stark, H.; Schneider, G., DOGS: Reaction-Driven de novo Design of Bioactive Compounds. *PLOS Computational Biology* **2012**, *8*, e1002380.

DOGS

γ-secretase modulators

Hartenfeller, M.; Zettl, H.; Walter, M.; Rupp, M.; Reisen, F.; Proschak, E.; Weggen, S.; Stark, H.; Schneider, G., DOGS: Reaction-Driven de novo Design of Bioactive Compounds. *PLOS Computational Biology* **2012**, 8, e1002380.

Retinoid X Receptor(RXR) Modulators

Merk D., et al. J. Med. Chem., 2018, 61 (12), pp 5442-5447

	reaction-based
exhaustiveness of chemical space search	+ depends on reactant library and reaction rules; only grow molecules
structure novelty	++
structure diversity	++
chemically valid structures	+++
synthetically feasible	+++
combinatorial explosion / time consuming	+++

reaction-based ≈ empirical

Pierce A.C., Rao G., Bemis G.W. J. Med. Chem., 2004, 47 (11), pp 2768–2775

BREED: HIV-1 protease inhibitors

Pierce A.C., Rao G., Bemis G.W. J. Med. Chem., 2004, 47 (11), pp 2768–2775

CONCEPTS

MD of fragments which are linking or breaking during the simulation in order to create more favorable structures

formation of certain bonds was forbidden: O–O, N–N, N–O, S–O, O–C–O, O–N–O, N–C–N, C_{α} – C_{α} , C– C_{α} –C

Pearlman D.A., Murcko M.A. J. Med. Chem., 1996, 39 (8), pp 1651–1663

CONCEPTS: HIV-1 protease inhibitors

Pearlman D.A., Murcko M.A. J. Med. Chem., **1996**, 39 (8), pp 1651–1663

Kutchukian, P. S.; Lou, D.; Shakhnovich, E. I., FOG: Fragment Optimized Growth Algorithm for the de Novo Generation of Molecules Occupying Druglike Chemical Space. *Journal of Chemical Information and Modeling* **2009**, 49, 1630-1642.

CReM: chemically reasonable mutations

CReM: chemically reasonable mutations

Generated structures are always chemically valid!

Polishchuk, P. CReM: chemically reasonable mutations framework for structure generation. J. Cheminf. 2020, 12 (1), 28.

	fragment-based
exhaustiveness of chemical space search	++ variable, controlled by the size of fragments to replace
structure novelty	++
structure diversity	++
chemically valid structures	(+++)
synthetically feasible	(++)
combinatorial explosion / time consuming	++

fragment-based ≈ semi-empirical

Reaction-based vs. fragment-based

Reaction-based

Fragment-based

Prerequisites: reaction rules set database of building blocks

• molecules are more likely to be feasible

Abilities & issues:

- not all moves are allowed
- usually only increase complexity
- some molecules can be unreachable

database of fragments

- do not control synthetic feasibility
 - many moves are allowed
- arbitrary direction of exploration
 - cover larger chemical space

22

De novo structure generation

Summary

	atom-based	fragment-based	reaction-based
exhaustiveness of chemical space search	++++ very small steps; more suitable for systematic exploration of local chemical space	++ variable, controlled by the size of fragments to replace	+ depends on reactant library and reaction rules; only grow molecules
structure novelty	+++*	++	++
structure diversity	+++*	++	++
chemically valid structures	-	(+++)	+++
synthetically feasible		(++)	+++
combinatorial explosion / time consuming		++	+++

Recurrent neural network (RNN)

Segler, M. H. S.; Kogej, T.; Tyrchan, C.; Waller, M. P., Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks. *ACS Central Science* **2018**, 4, 120-131.

Segler, M. H. S.; Kogej, T.; Tyrchan, C.; Waller, M. P., Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks. *ACS Central Science* **2018**, 4, 120-131.

unsupervised generation

976 327 compounds97.7% chemically valid11.5% were duplicated with ChEMBL1.7% of duplicates

75% passed AZ filters (similar to ChEMBL)12% of scaffolds were common with ChEMBL

Segler, M. H. S.; Kogej, T.; Tyrchan, C.; Waller, M. P., Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks. *ACS Central Science* **2018**, 4, 120-131.

	deep learning					
exhaustiveness of chemical space search	++					
structure novelty	++					
structure diversity	++					
chemically valid structures	++					
synthetically feasible	?					
combinatorial explosion / time consuming	+++					

Scoring and objective functions

ligand-based

scoring functions

structure-based

scoring functions

Can be any but preferably smooth to follow the chemical similarity principle:

- physicochemical properties
- similarity measures
- QSAR model prediction
- pharmacophore fit
- docking scoring

...

• molecular dynamics

• • •

Search algorithms

Can be any, for example:

- greedy search
- Monte Carlo
- evolutionary algorithms, e.g.:
 - genetic algorithm
- simulated annealing
- reinforcement learning

Inverse QSAR

\mathbf{D}_{1}	D ₂	D ₃	 D _N
1	0	9	 1
4	0	1	 1
0	2	3	 3
4	0	0	 1

Inverse QSAR: deep learning

Autoencoder

Inverse QSAR: deep learning

Gómez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Hernández-Lobato, J. M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A., Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Central Science 2018, 4, 268-276.

Gómez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Hernández-Lobato, J. M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A., Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. *ACS Central Science* **2018**, *4*, 268-276.

Control of synthetic accessibility

34

Assessment of synthetic accessibility

Journal of Cheminformatics

SYBA: Bayesian estimation of synthetic accessibility of organic compounds

Assessment of synthetic accessibility

ChEMBL22 (1.58 M compounds)

Assessment of synthetic accessibility

Control of synthetic accessibility

Polishchuk, P., Control of Synthetic Feasibility of Compounds Generated with CReM. Journal of Chemical Information and Modeling **2020**, 60, 6074-6080. (10.1021/acs.jcim.0c00792)

V-SYNTHES

Fig.1 | V-SYNTHES approach to modular screening of Enamine REAL Space. A general overview of the four-step algorithm (left) and examples for each step (right). Asterisks in step one show the attachment points of synthons; arrows show possible pairing of minimal synthons with real synthons.

Sadybekov, A. A. et al, Synthon-based ligand discovery in virtual libraries of over 11 billion compounds. *Nature* **2021**. (10.1038/s41586-021-04220-9)

V-SYNTHES

			а	ا		C L NO	Ç	
					505			610
			CB, K		0.28 (0.22-0.3	6) μM		0.76 (0.62–0.93) μM
а)		CB ₂ K _i		0.54 (0.43–0.6	7) μM		4.17 (3.14–5.62) μM
R'						CI,	R H H K N.	
// _/	\sim			523			665	673
			CB ₁ K _i	1.82 (1.46–2	2.28) μM	0.30	(0.32–0.47) μM	0.97 (0.84–1.14) μM
523 so	caffold		CB ₂ K _i	1.59 (1.27–1	.98) μM	0.82	(0.71–0.95) μM	3.66 (2.98–4.51) μM
c	R1	→ ⁰ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹	\bigcirc	NH Jar	0~~~	-0 0 		
	Compound	733	736	738	742	747	749	
CB, functional	K _i (nM)	871	1,185	856	2,340	455	209	
potency	CI 95% (nM)	(720–1,051)	(868–1,603)	(725–1,009)	(1,878–2,919)	(373–558)	(177–248)	
CB ₂ functional	K _i (nM)	10.9	48.5	125	120	9.6	49.2	
potency	CI 95% (nM)	9.3-12.9	38.6-61.0	105-148	101-144	8.58-10.8	42.1-57.6	
CB, binding	K _i (nM)	43.2	140	23.1	394	228	689	
affinity	CI 95% (nM)	28.2-66.1	105-186	13.9–38.6	281-551	172-303	472-1,004	
CB, bindina	K _i (nM)	1.2	2.8	13.0	6.4	0.9	4.0	
affinity	CI 95% (nM)	0.9–1.6	2.0-3.7	10.2-16.6	5.2-7.8	0.6–1.2	2.5-6.5	

Sadybekov, A. A. et al, Synthon-based ligand discovery in virtual libraries of over 11 billion compounds. *Nature* **2021**. (10.1038/s41586-021-04220-9)

Take home message

- De novo design can efficiently explore much larger chemical space than virtual screening
- There are multiple approaches to generate chemically valid structures, all of them have their pros and cons
- The main issue of de novo design is synthetic feasibility of generated compounds
- There are several ways how to control synthetic feasibility