

Chemography concept in chemical space exploration

Alexandre Varnek

University of Strasbourg

8ADD workshop Olomouc, 27th January 2025

Chemical Space - definition

What is « Chemical Space »

- ensemble of molecules ?
- mathematical object ?

Chemical space can be viewed as being analogous to the cosmological universe in its vastness, with chemical compounds populating space instead of stars *C. Lipinski and A. Hopkins, 2004*

A set of molecules forms a chemical space, for which the relationships between the objects (graphs of descriptor vectors) are established *A.Varnek & I. Baskin, 2011*

One can formulate chemical space as a mathematical and usually high-dimensional space where distances represent similarities between molecules which can be represented in the form of chemical space maps by applying various dimensionality reduction methods

J. L Reymond, 2025

Chemical Space representations

Chemical Space representations

Graph-based chemical space

- Scaffolds analysis
- Molecular Matched Pairs
- Activity cliffs
- Chemical space networks (e.g., MMP-based)

Vector-based chemical space

- Data visualization and analysis in descriptors space
- Chemical space networks (e.g., similarity-based)

In silico drug design: Big Data problem

Chemography: efficient solution for Big Data handling

Data visualization: dimensionality reduction problem

Initial chemical space (N-dimensional)

Latent chemical space (2-dimensional)

Dimensionality reduction methods

Acetylcholinesterase dataset (DUD) : 100 actives and 100 inactives

Multi-Dimensional Scaling

Canonical Correlation Analysis Independent Component

Analysis

Exploratory Factor Analysis

Sammon map

Isomap

Locally Linear Embedding

t-SNE

Laplacian Eigenmaps

Autoencoder dimensionality reduction

Generative Topographic Mapping : areas of application

Tunable ISIDA fragment descriptors

Generative Topographic Mapping (GTM)

GTM Landscapes

Class landscape

C₃

 C_4

 C_5

c₂

Activity landscape

p ₁	р ₂	p ₃	p ₄	\mathbf{p}_{5}
-----------------------	----------------	----------------	----------------	------------------

300

200

Each landscape can be encoded by a set of special GTM-descriptors characterizing either *structures* only or *structures* & *activity* distributions

GTM Landscapes as predictive models

GTM: Chemical space analysis

Density landscape of ChEMBL (1.8 M cpnds, ISIDA descriptors)

Each zone of density landscape can be associated with some chemotypes

A4. Halogenated N-heterocycles

GTM: density and activity landscapes for ChEMBL

- identify the most similar ChEMBL compounds,
- predict its pharmacological profile for > 700 biological activities

Pairwise libraries comparison

Task : identification of structural motifs unique for a given library

Data analysis: histograms vs chemography

Case study 1 : Commercial vs Biologically relevant data

Hierarchical GTM navigation of the chemical space

Maximum Common Substructures (MCS)

NH O

Commercial vs Biologically relevant data

Chemspace Atlas: Multiscale Chemography of Ultralarge Libraries for Drug Discovery

Yuliana Zabolotna, Fanny Bonachera, Dragos Horvath, Arkadii Lin, Gilles Marcou, Olga Klimchuk, and Alexandre Varnek*

Cite This: https://doi.org/10.1021/acs.jcim.2c00509

Case study 2: Proprietary Library Reshaping

Sigma-Aldrich

Boehringer

Case study 3: Freedom space (5B) vs REAL space (40B)

Delivering Discovery Solutions®

- GTM shows very little overlap between Freedom and REAL spaces
- Freedom space is more enriched with drug-like compounds

Multiple libraries analysis

Task : selection a library most similar to the reference one

Generation and analysis of general-purpose DELs

DNA-Encoded Library: combinatorial collection of small molecules covalently attached to the short DNA tag

DEL challenge

Screening libraries

DNA-encoded libraries

Parallel screening in separate "wells"

Individual compounds may be cherry-picked

Simultaneous screening in a single tube

Entire library as an object must be considered

DNA-Encoded Libraries (DEL)

How to select an optimal DEL for a particular drug discovery task?

GTM-based similarity assessment DEL / reference library (ChEMBL)

Focused Library design: case study

79.000 Building blocks from eMolecules

- **2500** DELs designed (size: 1M-1B)
- **2.5 B** compounds generated (1M cmpds per DEL)

2500 comparative landscapes DEL_i/reference (ChEMBL)

How many DELs cover ChEMBL chemical space ?

Chemical Library Space

- A GTM encodes a chemical library as a vector calculated from the property/activity landscape
- Ensemble of vectors can be used to build a meta-GTM (μGTM) where each data point represents a library

µGTM of the DEL space

R. Pikalyova et al. J Chem Inf Model. 2023 63 (17), 5571-5582

µGTM: DEL reaction types

- Most of the DEL space is covered by coupling-based libraries
- Very few DELs that are purely heterocyclization-based
- The coupling-based DELs are more similar to ChEMBL than the heterocyclization ones.

Cartography of ultra-large combinatorial libraries

Pipeline of GTM construction for combinatorial library

CoLiNN – Neural Network for GTM preparation without structure enumeration

CoLiNN skips the enumeration step, thus accelerating GTM construction

Pikalyova R., T. Akhmetshin et al., et al. ChemRxiv, 2024, DOI: <u>10.26434/chemrxiv-2024-qh3bn</u>
CoLiNN – Neural Network for GTM preparation without structure enumeration

1. Building Block Embedding

Building blocks:

2. Reaction Embedding

Reactions:

3. Responsibility vector prediction

Model performance as a function of training set size

Pikalyova R., T. Akhmetshin et al., et al. ChemRxiv (2024).

Drug resistance: Cartography analysis of proteins and nucleic acids mutations

- Human Immunodeficiency Virus (HIV)
- Staphylococcus aureus bacteria

- 38 million people infected with HIV
- Highly effective therapy is available
- Increasing emergence of drug resistance

HIV infected patients

J.Y.Yeo, G.-R. Goh, C.T.-T. Su, S. K.-E. Gan, Viruses 2020, 12, 297.

HIV infected patients

J.Y.Yeo, G.-R. Goh, C.T.-T. Su, S. K.-E. Gan, Viruses 2020, 12, 297.

HIV drug resistance: data

4324 HIV protease (PR) and reverse transcriptase (RT) amino acid sequences and associated resistance profiles to 6 PR and 8 RT inhibitors

Sequence	Drug resistance profile			
Indinavir	Darunavir	Nelfinavir	Lopinavir	•••
P·N·I·W·K·T Resistant	Susceptible	Resistant	Susceptible	
PLITKT Resistant	Susceptible	Resistant	Resistant	
P Q I T K T Susceptible	Susceptible	Resistant	Susceptible	

HIV Drug Resistance Database. https://hivdb.stanford.edu/. Datasets updated on 03.02.2021.

Sequence descriptors

HIV-1 protease drug resistance

- Homodimer
- 99 amino acid residues per monomer
- 8 approved protease inhibitors

NH₂

Resistance landscapes for protease inhibitors

Resistance-determining mutation patterns in protease

Predicting drug resistance for emergent strains

Antimicrobial resistance: Staphylococcus aureus

- Bacterial antimicrobial resistance (AMR) responsible for 1.27 million global deaths
- AMR could result in US\$ 1 trillion additional healthcare costs by 2050 (the World Bank estimates)
- Increasing emergence of antibiotic resistance

Tackling "fat data" challenge in genomic data

Gene-specific landscapes linking genes with drug resistance

Chemography-guided generation of novel entities using AI tools

- •Molecules
- •Reactions
- •Peptides

Autoencoder performing SMILES reconstruction

AutoEncoder: sampling using a seed vector

Goal: to identify a seed vector from which valid structures possessing a given activity can be generated

AutoEncoder: example of sampled structures

The numbers correspond to the Tanimoto similarity

Chemography-guided molecule generation

GTM identifies a zone in the latent space from which "useful" structures are sampled. Such zone is detected either by the human or by computer algorithm

B. Sattarov et al. J. Chem. Inf. Model., 2019, 59(3), 1182-1196

Case study: Generation of inhibitors of A2a receptor

- Generated structures are enriched with new scaffolds
- According to docking experiments they are efficiently able to bind A2a

AI-driven design of new chemical transformations

Reactions: methodological problems:

- Complexity: reaction equation contains several molecular graphs of two types reactants and products
- Reaction novelty detection and reaction feasibility assessment are not well established

Complexity reduction: Condensed Graph of Reaction (CGR)

CGR SMILES is almost twice shorter than conventional reaction SMILES

A. Varnek et al., J. Computer-Aided Molecular Design, 2005, 19, 693-703

AI-driven design of new Suzuki-like reactions

- 13 new (with respect to the training data) Suzuki-like reactions have been detected
- 5 of them have been found in SciFinder

AI-driven design of reactions: experimental validation

W. Bort et al., Nature Scientific Reports, 2021, 11, 3178

In silico design of novel peptides against Methicillin Resistant Staphylococcus Aureus (MRSA)

Diverse range of infections (from mild skin infections to life-threatening conditions, e.g. sepsis)

Duerden BI. Eye (Lond). 2012. 26.

People with MRSA are 64% more likely to die as opposed to its non-resistant variant

World Health Organization (2018). Antimicrobial resistance fact sheet.

Formation of biofilms (more resistant at conventional antibiotics dosages)

Choi, V. et al. Nat Rev Microbiol 21, 555-572 (2023).

Design of antimicrobial peptides: generation workflow

Training set composition

Inclusion criteria:

- 10-14 amino acids long
- Only natural amino acids
- Only linear peptides

Cartography-based design of novel peptides

Pikalyova K., et al., et al. BioRxiv, 2024, DOI: 10.1101/2024.11.17.622654

Experimental results

THE UNIVERSITY OF BRITISH COLUMBIA

Synthesis & experimental testing of peptides against MRSA biofilms and planktonic cells

Screening results

8/8 peptides more active against MRSA biofilms compared to control

 \circ

5/8 peptides active against MRSA planktonic cells compared to control

Most active peptide is 10-fold more active against MRSA biofilms well-studied control peptide IDR-1018

AutoEncoder vs Molecular descriptors space

GTM Class landscapes for A2a-receptors binders (1303 actives and 3618 inactives)

69

no structures generation •

- generation of new structures

Goal: development of deep-learning architecture able to generate structures with desired activities using *any* descriptor space

Sampling from any descriptor space: inverse-QSAR task

Attention-based Conditional Variational Autoencoder (ACoVAE) deep-learning architecture able to generate structures from any descriptor space

Neighborhood preservation benchmark: GTM vs t-SNE, UMAP and PCA

Congeneric series 103 subsets extracted from ChEMBL

Descriptor sets Morgan fingerprints, MACCS keys, ChemDist

Comparative analysis of neighborhood preservation according to 18 metrics

Why GTM ?

GTM considers data probability distribution which makes it suitable for Big Data analysis

GTM manifold can be built on a small representative subset and it can accommodate new data

GTM landscapes can be used in regression or classification tasks

A data collection can be encoded by a vector which enables fast chemical libraries' comparison

Coupling of GTM with the AI technologies facilitates *de novo design*

Teams

- MSC-DN Marie-Curie AiChemist
- ITN Marie-Curie BigChem
- ITN Marie Curie TubInTrain
- Institute of Organic Chemistry, Kiev, Ukraine

- Eli Lilly
- SANOFI
- Enamine
- eMolecules
- Novalix
- Janssen Pharmaceutical
- TotalEnergy
- SOLVAY

Cartography is an efficient way to explore a (chemical) space

